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Abstract

Determining the shape and deformations of structures with complex geometries has become an increasingly common task in the 

construction industry. This article presents a case study on determining the shape and deformation of a slope and circular steel 

structure, a cigar-shaped cable-stayed bridge pylon with varying cylindrical and conical shapes during three key construction stages 

using terrestrial laser scanning (TLS) point cloud data and the Random Sample Consensus (RANSAC) algorithm for shape fitting. 

A methodology involving vertical reorientation, point cloud slicing, and RANSAC-based circle fitting was applied to cross-sections of 

the pylon. Optimal RANSAC parameters were determined to be 80 iterations and a 5 mm tolerance, achieving reliable circle fitting with 

root mean square (RMS) errors predominantly within 3 mm across all scans. After initial steel frame installation, geometric distortion 

analysis revealed minimal deviations within a 2 mm radius error, a slight increase after concrete pouring, and a partial recovery in the 

final stage, except for a localized anomaly at the pylon's top. Deformation analysis along the pylon's axis showed maximum horizontal 

displacements of 65 mm according to the static models in the first scan, reaching a maximum of 269 mm after pouring concrete, with 

a subsequent reduction and change in direction after cable tensioning. This research demonstrates the efficacy of TLS and RANSAC 

for evaluating structural deformation and emphasizes the importance of parameter optimization for accurate point cloud analysis in 

complex civil engineering structures.
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1 Introduction
In the last three decades, there has been a substantial 
increase in the desire to use advanced emerging technol-
ogies for inspecting, assessing, and managing civil infra-
structure. Technologies like laser scanners have become 
compelling alternatives to traditional inspection and main-
tenance methods, which could be labor-intensive, costly, 
and unsafe. This trend is pronounced in the construction 
industry, typically in bridge monitoring [1, 2]. Terrestrial 
laser scanning (TLS) is a high-precision surveying tech-
nique that efficiently captures the spatial coordinates of 
objects of interest with incredible accuracy, remarkable 
precision at the millimeter level [2–5]. TLS employs mul-
tiple laser beams to hastily scan a target object, generat-
ing a dense point cloud that facilitates the construction of 
complex models. This technique gathers extensive 3D data 

over large areas, capturing a substantial number of laser 
measurements per second, optimizing performance effi-
ciency  [2, 6]. The key advantage of TLS is its non-con-
tact operation, eliminating potential harm or interference 
that traditional measurement methods may cause  [1,  7]. 
Furthermore, TLS is adversely affected by external envi-
ronmental factors, ensuring stability in challenging con-
ditions characterized by multiple light sources or intense 
lighting, complex backgrounds  [8]. Its  full-range scan-
ning capabilities enable data capture of both horizontal 
and vertical planes, providing extensive information for 
deformation monitoring, panoramic photograph views, 
and incoming light intensity of the target object. Given its 
extreme precision, high data density, efficiency, non-con-
tact measurement approach, and reduced susceptibility to 
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external interference, TLS has become an indispensable 
tool for deformation monitoring, with widespread appli-
cations across various industries [9, 10]. While TLS is uti-
lized for deformation monitoring, defining the scanning 
area based on the shape and size of the object is crucial 
to ensure measurement accuracy [11]. Nevertheless, many 
factors may impact the accuracy of laser scanner observa-
tions, including laser power, ambient lighting conditions, 
and scanning speed [12]. 

Structural deformation analysis with point cloud shape 
fitting using the Random Sample Consensus  (RANSAC) 
algorithm includes detecting and quantifying changes in 
a structure's geometry over time by fitting geometrical 
shapes like planes and cylinders to point cloud data. Then, 
RANSAC is used in subsequent scans to refit the model to 
updated point clouds. Deviations between the initial model 
and the new fits are calculated to detect structural defor-
mations, like shifts in alignment, radius changes, or tilt [1].

Fischler and Bolles [13] introduced the Random Sample 
Consensus RANSAC algorithm, a widely employed robust 
estimator designed to fit models to datasets containing 
a significant proportion of outliers. Operating under a 
hypothesize-and-verify framework, RANSAC iteratively 
selects minimal random subsets of data points to hypoth-
esize model parameters. Each hypothesized model is then 
evaluated against the entire dataset to determine its sup-
port and the number of data points consistent with the 
model within a predefined threshold [14–16].

A key strength of RANSAC lies in its tolerance to a sig-
nificant fraction of outliers, making it an important tool in 
various fields. In computer vision, it is used for tasks such 
as estimating epipolar geometry, homographies, and fun-
damental matrices. RANSAC has also been successfully 
applied in image registration, including the automated reg-
istration of satellite images. Furthermore, in geodesy and 
LiDAR data processing, it is utilized for point cloud seg-
mentation and registration, as well as for fitting geometric 
primitives like planes and spheres to point clouds [17–22]. 
The performance of RANSAC is affected by multiple input 
parameters, including the minimum number of points 
required to define the model, the expected percentage of 
inliers, the desired probability of finding a good model, and 
the threshold value for determining inliers. The algorithm 
repeats the postulate and verification process until a ter-
mination criterion, based on the desired confidence level, 
is met. Owing to its stochasticity, the results of RANSAC 
can change over multiple runs on the same data, highlight-
ing the importance of evaluating its reliability. Several 

modifications and improvements to the basic RANSAC 
algorithm have been recommended to enhance its efficiency 
and robustness for particular applications [14–16, 23].

This paper investigates the deformation behavior of a 
pylon by analyzing geometric distortions and potential rota-
tions around its central axis throughout different stages of 
construction. Beyond the deformation analysis, the study 
also aims to evaluate the robustness and reliability of 
RANSAC-based algorithms for geometric feature extraction 
from point cloud data. This research promotes understand-
ing of deformation monitoring and using point cloud pro-
cessing strategies in structural assessments by addressing 
structural performance and computational accuracy.

2 Methodology
The precise measurement and analysis of the geometry of 
complex structures, such as sloped cylindrical and conical 
pylons (e.g.,  the pylon of cable-stayed bridges), pose sig-
nificant challenges in engineering surveying. Conventional 
instruments, such as total stations, depend on clearly 
defined markers for accurate measurements; however, 
these reference points are often absent on smoothly vary-
ing surfaces. Additionally, the direct manipulation and 
analysis of these structures in three dimensions is inher-
ently complex due to the complexity of reconstructing their 
exact geometry from discrete measurement data. A robust 
methodological framework is utilized to tackle these chal-
lenges, which leverages point cloud data for structured 
analysis. This method consists of slicing the point cloud 
into a series of cross-sections along the longitudinal axis 
of the pylon, thus turning a 3D  problem into a series of 
2D problems. Each cross-section is examined, and the con-
tour points are extracted and fitted to an assumed ideal cir-
cular cross-section as shown in Fig. 1. The actual axis of 

Fig. 1 Fitted circle along axis 24.259 m of scan 3 measured data
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the pylon is derived from the center points of the circles, 
enabling a direct comparison between the designed geom-
etries and the as-built. This workflow transforms a com-
plex 3D reconstruction object into a more manageable and 
precise analysis, ensuring accurate evaluation of geomet-
ric deviations for quality control and structural assessment.

Since the pylon has a slope, obtaining consistent 
cross-sections from direct analysis of the object in its origi-
nal orientation for geometry assessment is difficult. Thus, a 
transformation is applied to reposition the pylon into a ver-
tical orientation to measure the pylon correctly. The trans-
formation permits cross-sections of the structure to be 
drawn perpendicular to the re-aligned longitudinal axis 
instead of slicing across oblique plane. As a result, these 
cross-sections consistently reflect the structure's actual 
geometry at different heights. The transformation refines 
contour point extraction accuracy and circular fits/axis 
reconstruction, free from the effects of the original slope.

A RANSAC algorithm is a distinct option that should 
be applied to lines, planes, and spheres to determine the 
geometry of measured shapes accurately. RANSAC  is 
highly beneficial because it can handle noise and outli-
ers, ensuring reliable model fitting even in the presence of 
measurement errors or local irregularities. The RANSAC 
algorithm is commonly employed due to its robust-
ness [13, 24, 25]. The RANSAC procedure involves ran-
domly selecting a set of data points necessary to define a 
model, referred to as parameter estimation. These points 
are used to establish the model and calculate the devia-
tion of all other data points from it [26]. Data points are 
classified as outliers and inliers based on their distance to 
the model. Points that fit the model within a defined toler-
ance are inliers, while those that do not are outliers. Each 
iteration selects a new random set of data points to define 
the model, and the count of inliers is determined. This 
process repeats for a specified number of iterations, and 
the solution with the highest number of inlier points is 
chosen. For this solution, the best-fitting model is refined 
using a method like least squares.

Advances in computational power allow for hundreds or 
thousands of iterations. However, the method is non-deter-
ministic, meaning it provides a correct result only with a 
certain probability, which can be improved by increasing 
the number of iterations. Another drawback is its sensitivity 
to parameter selection (tolerance, iteration count), as these 
parameters are highly dependent on the dataset  [1,  25]. 
The required number of iterations can be estimated using 
the Eq. (1) follows the formulation presented in [23]:
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where: k is the number of iterations, n is the lowest num-
ber of points to uniquely define the model, p is the desired 
probability (confidence level) that RANSAC selects at 
least one sample consisting entirely of conformal (inlier) 
points belonging to the fitted circle, typically set to 0.99, 
and w is the proportion of occurrence of conformal data.

RANSAC can detect particular shapes in a point cloud, 
such as planes, spheres, cylinders, and cones, with only up 
to 50% of the points not adhering to the model. RANSAC 
is employed to fit 2D shapes such as circles by making 
repeated random samples of a minimal subset of points to 
fit the best model. Specifically, three points are randomly 
selected for circles at a time used to define the candidate 
circle. The remaining points are evaluated to determine 
how well they conform to the model using a pre-deter-
mined threshold value. Points within the threshold regard-
ing distance to the candidate circle are deemed inliers, 
while points further from the candidate geometry are out-
liers. RANSAC applies this method to perform groups of 
random selections to converge upon a model that maxi-
mizes the number of inliers and generally yields the fitted 
circle that is most robust to noise or outlier points. 

Configuring RANSAC parameter settings, including 
the iteration count and the tolerance threshold is essen-
tial for attaining precise geometric fitting in point clouds; 
refer to Fig. 2, a flowchart of the RANSAC parameter set-
ting up. A deficient number of iterations may not discern 
the appropriate model, whilst excessive iterations ele-
vate computing expenses without substantial improve-
ments in accuracy. The parameter tolerance threshold 
must balance the noise resistance and the incorporation 
of valid inliers. The parametrization of the algorithm is 
optimal, which requires iterative fine-tuning of parame-
ters and some prior knowledge regarding the constraints 
of the dataset to balance accuracy and efficiency. This 
iterative improvement improves the robustness of the esti-
mates of the model through consideration of measurement 
noise and structural irregularities. This repetitive refine-
ment enhances the reliability of the estimated model by 
allowing variations in measurement noise and structural 
irregularities. The fitting quality is evaluated through root 
mean square (RMS) error calculations, which quantify the 
accuracy of the identified circles. Furthermore, the ratio 
between outliers and inliers and the number of outlier and 
inlier points is computed. The detected x and y coordinates 
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of the circles and their corresponding radius are thus 
extracted as geometric parameters, which describe the 
circular features in a detailed way. Upon reviewing the 
literature, we found a lack of studies addressing the issue 
of selecting appropriate RANSAC parameters to obtain 
reliable results. Ref.  [23] is among the limited studies 
explicitly examining parameter selection of the RANSAC 
algorithm and its impact on geometric shape detection in 
point clouds. The  inlier percentage and threshold varia-
tion effects on plane and sphere modeling from laser scans 
were analyzed through simulation. Outcomes underline 

the efficiency of RANSAC; however, they highlight the 
need for several repetitions and preceding knowledge for 
reliability. Additionally,  [16] examines the reliability of 
the RANSAC algorithm in estimating geometric param-
eters in point cloud data, which is commonly used in geo-
detic surveying. Whereas RANSAC effectively detects 
shapes such as planes, spheres, and cones, its consistency 
is frequently overlooked. These authors assess reliability 
by repeatedly applying RANSAC over the same dataset 
and analyzing parameter variation across runs rather than 
relying only on inlier residuals. Results indicate that a sin-
gle RANSAC run may overestimate accuracy, emphasiz-
ing the need for multiple repetitions to enhance reliability.

Equation (1) recommends 34, 70, 168, 573, 4603, and 
36839  iterations for fitting a circle to points in a point 
cloud with (n = 3) and an assumed 50%, 40%, 30%, 20%, 
10%, and 5% inlier ratio, respectively. The  tolerance 
value, crucial to the fitting process, should be determined 
by the user based on experience and preliminary calcu-
lations. The tolerance selection and the model's accuracy 
assessment can be informed by examining the fit residu-
als and the precision of the model parameters established 
during adjustment.

The optimized RANSAC parameters were determined 
through a comprehensive parameter study, involving vari-
ous repetition levels, a high number of iterations, and sys-
tematically varied tolerance thresholds for each configu-
ration. The pylon structure was segmented into predefined 
sections at constant intervals and RANSAC was applied 
to assess convergence behavior. Across the entire dataset, 
several million circles were generated.

3 Data acquisition from the Robinson Bridge
The Robinson Bridge, a pedestrian and cycling bridge 
between South Pest and Csepel in Budapest, spans the 
mouth of the Danube branch in Ráckeve. It  connects 
the National Athletics Stadium with its training fields. 
Officially named the pedestrian bridge on Split Island 
(Osztósziget), it is also referred to as Robinson Bridge, as 
the island is known as Robinson Island. This 168-meter 
cable-stayed bridge features concrete-lined steel tubes and 
an orthotropic deck. The 64-meter-high steel pylon on the 
island is anchored by 53 inclined cables and three back 
cables, supporting the 7-meter-wide deck. With a unique 
design, the steel structure has no intermediate fixed sup-
ports. The bridge was designed by Speciálterv Ltd., with 
Gábor Pál as the lead designer [26], the pylon's profile var-
ies along the center line as shown in Fig. 3.

Fig. 2 Flowchart of RANSAC parameter setting up
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During the data collection phase, we measured the 
shape of the pylon at three key construction stages and 
compared these measurements to the shape derived from 
structural models. The  first measurement phase occurred 
on  January  17,  2022, after the steel-framed pylon was 
installed, resulting in the collection of 3.9 million points at a 
surrounding temperature of 3 °C. The second phase occurred 
on  June  9,  2022, following the completion of the pylon's 
concrete structure, during which 2.5  million points were 
collected at 20 °C. The final measurement was conducted 
on  August  30,  2022, after the cables were tensioned and 
the temporary supports and track structure were removed, 
yielding 15.8 million points at 20 °C. Scans 1, 2, and 3 will 
represent the first, second, and third measurements.

The measurements were carried out using a Leica C10 
terrestrial laser scanner. Point clouds from multiple scan-
ning positions were registered with each other using refer-
ence markers and aligned with the construction network 
system. The coordinates of these reference points were 
determined using a robotic total station, achieving registra-
tion and alignment within a few millimeters of accuracy.

4 Results 
4.1 RANSAC parameters assessment for circle fittings
This study uses RANSAC as a robust method for detect-
ing circular features in 3D point cloud data. Spatial data 

is transformed to make the aforementioned algorithm sim-
pler to apply.  The transformation parameters are derived 
from the pylon plan, involving a translation and a rotation 
around the z-axis and x-axis.

The point cloud was intersected every 1 meter along the 
axes of the pylon with a section thickness of 5 cm. This 
thickness was chosen to balance structural detail preser-
vation and computational efficiency. It  ensures sufficient 
geometric information for accurate feature extraction 
while minimizing excessive noise and overlap. A  thin-
ner section might lack data for reliable fitting, whereas 
a thicker one could introduce unnecessary complexity. 
This thickness aligns with typical engineering tolerances, 
reduces sensitivity to minor point cloud irregularities, 
and maintains consistency with the precision of terres-
trial laser scanning, ensuring stable and meaningful geo-
metric analysis. The section points were then used for cir-
cle fitting through an iterative robust estimation process 
employing the RANSAC procedure. 

The parameters were set accordingly to evaluate 
the  RANSAC method. It  has executed 1, 5, and 10 rep-
etitions to achieve this, with iterations ranging from 1 
to 100 and a systematically varying tolerance ranging 
from 1 mm to 20 mm in increments of 1 mm. The pylon 
was divided into 60  sections to analyze convergence 
behavior. For the whole data set, 1.2 million circles were 

Fig. 3 (a) The Robinson Bridge pylon profile, (b) The Robinson Bridge
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generated. Inaugural, to increase the likelihood of finding 
an optimal model, we set the number of repetitions to 10 
as an initial stage of parameter configuration. Establishing 
clear convergence criteria is crucial for ensuring the reli-
ability of the estimated parameters. First, the scatter 
plots of all three scans in Fig. 4 illustrate the root mean 
square  (RMS) values in millimeters as a function of the 
number of iterations for all evaluated sections while the 
tolerance is fixed. Each blue dot represents the RMS error 
for a circle fitted at a given iteration step. Initially, the 
data exhibits high fluctuation and multiple outliers, par-
ticularly within the first 20 iterations, where RMS values 
occasionally exceed 200 mm. However, as the number of 
iterations increases, the RMS values sharply fall and sta-
bilize. Approximately 80 iterations, the RMS values con-
sistently converge toward a low range, indicating minimal 

error and improved fitting accuracy. This convergence 
behavior confirms that 80 iterations are sufficient to gen-
erate circles reliably with confident RMS values, ensuring 
accurate section-fitting results across the dataset. 

Fig. 5 illustrates the relationship between the RMS and 
tolerance when the number of iterations is fixed at 80. 
The  scatter plot shows a relatively consistent RMS dis-
tribution across the full range of tolerance values from 
approximately 1 mm to 20 mm. The lack of a clear rising 
or falling trend suggests that variations in tolerance have 
little to no significant effect on the  RMS. Based on this 
observation, a tolerance value of 5 mm is selected as a 
reasonable and stable parameter for subsequent analysis. 
At this stage RMS stabled between 2 to 3 mm. 

The fixed tolerance of 5 mm and 80 iterations for three 
measurement stages Scan  1, Scan  2, and Scan  3 was 

Fig. 4 Iteration of all sections versus RMS (a1, a5, a10) Scan 1, (b1, b5, b10) Scan 2, and (c1, c5, c10) Scan 3, while values 1, 5, and 10 represent the 
number of repetitions
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conducted, illustrating the RANSAC fitting performance. 
The RMS error is presented for each scan, reflecting the 
fitting accuracy across individual sections. The  results 
explore that the RMS values persist at consistently low 
levels, predominantly within the 1–3 mm range across all 
scans. Although Scan 2 exhibits slightly more significant 
variation, the overall differences are minimal, indicating 
that the employed parameters yield reliable and accurate 
circle fitting for each measurement phase.

The error in the estimated radius is calculated as the 
difference between the planned (design) radii and those 
obtained from fitted circles at each section across all three 
measurement phases presented in Table 1. This comparative 
assessment was performed to evaluate the reliability and 
stability of the circle fitting process using RANSAC with 
multiple iterations. The deviation in radius converged along 
the iterations until it reached around 80  iterations. Then, 
the deviation in radius remained consistently low for most 
sections in all scans around 3  mm, indicating a minimal 

discrepancy between the planned and fitted geometries. 
This consistency supports the outcome that using 80  iter-
ations is sufficient to achieve accurate and reliable circle 
fitting, as confirmed by the low RMS values. The results 
prove the robustness of the fitting process under the speci-
fied conditions and validate the methodological choice.

According to the analysis, 80 iterations are recom-
mended for reliable circle fitting, corresponding to an inlier 
ratio of approximately 37%. During the RANSAC-based 
fitting process, a threshold of 5 mm proves sufficient for 
achieving accurate results. While increasing the number of 
repetitions plays a critical role in increasing the likelihood 
of finding an optimal model, we set the number of repe-
titions to  10. The  proposed approach demonstrates high 
robustness in detecting circular structures within complex 
3D environments. The combination of spatial transforma-
tion, sectioning, and iterative model refinement ensures 
reliable feature extraction, even in significant noise.

Fig. 5 Tolerance for iteration 80 of all sections versus RMS (a) Scan 1, (b) Scan 2, and (c) Scan 3

Table 1 Error in the estimated radius along three phases of the construction

Elevation (m)
Scan 1 Scan 2 Scan 3

Planned radius 
(mm)

Measured 
radius (mm)

Radius error 
(mm)

Measured 
radius (mm)

Radius error 
(mm)

Measured 
radius (mm)

Radius error 
(mm)

4.259 823 824 −1 817 +6 828 +5

9.259 885 887 −2 887 −2 886 +1

14.259 948 950 −2 950 −2 949 +1

19.259 1000 1001 −1 1001 −1 1000 0

24.259 1000 999 +1 1000 0 999 −1

29.259 1000 1000 0 1000 0 999 −1

34.259 1000 1001 −1 1000 0 999 −1

39.259 985 986 −1 984 +1 984 −1

44.259 896 896 0 894 +2 894 −2

49.259 806 807 −1 804 +2 805 −1

54.259 716 717 −1 715 +1 716 0

59.259 474 473 +1 470 +4 473 −1

64.259 200 200 0 --- --- --- ---
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4.2 Robinson Bridge pylon deformation monitoring
The centers of the fitted circles reveal the actual shape of 
the pylon's axis. The  ideal axis shape is represented by 
a straight line, making an angle of 81° with the horizon-
tal and 251.95206° with the north according to the  plans. 
However, the pylon's structure is deformed, deviating from 
the ideal shape due to its self-weight, temperature variations, 
environmental influences (e.g., wind), and the track struc-
ture suspended through the cables, which serves as a load. 
The deformations were calculated using static models based 
on the finite element method. The designer provided the cal-
culated deformations at specific points, as listed in Table 1, 
measured at 5-meter intervals along the pylon's axis. 

According to the design specifications, the actual defor-
mations at these points were to be determined and com-
pared to the calculated values. The designer also set toler-
ances for the deviation between the actual and estimated 
values, expressed as a fraction of the distance measured 
along the pylon axis.

The deformations of the pylon measured at three dif-
ferent times during data collection are presented in the 
direction of the pylon's tilt, as Yc, and perpendicular to 
it, as  Xc, relative to the ideal shape in Fig.  3(a). In  the 
direction of the tilt, positive deformation indicates a shift 
toward the track structure, while in the perpendicular 
direction, positive deformation indicates a shift toward 
Csepel Island, which refers to a horizontal displacement 
approximately in the northeast–southwest direction that 
is perpendicular to the pylon's tilt direction (251.95206°). 
Fig.  6 shows that in Scan  1, the maximum deformation 
of the steel structure due to self-weight was −65  mm 
in the direction of tilt and +45  mm perpendicular to it. 
In Scan 2, deformations increased after the steel structure 
was concreted, with a maximum value of −269 mm in the 
tilt direction and +55 mm perpendicular to it. In Scan 3, 
after the suspension of the track structure, tensioning of 
the cables, and removal of the temporary supports for the 
pylon and track structure, the direction of the deforma-
tions changed, and their magnitude decreased slightly 
compared to the Scan 2 measurements.

5 Conclusions
Accurately assessing the shape and deformation of geo-
metrically complex structures is becoming increasingly 
necessary in the construction sector. This paper details a 
case study that characterizes the shape and deformation of 
a roughly 65-meter-long, circular steel structure featuring 
a variable radius. A significant challenge arose from the 

absence of readily measurable points using conventional 
geodetic techniques, necessitating data acquisition via ter-
restrial laser scanning from multiple viewpoints.

Our developed methodology addressed this challenge 
by intersecting the acquired point cloud data with planes 
oriented perpendicularly to the planned axis of the pylon. 
Subsequently, circles were fitted to the point distribu-
tions within these cross-sections using an iterative and 
robust Random Sample Consensus (RANSAC) procedure. 
Despite a substantial proportion of outlier points (approx-
imately 20-60%) within each intersection, the center and 
radius of the fitted circles were determined with millime-
ter-level accuracy. The deformations measured using the 
proposed approach strongly supported those predicted by 
static structural models, confirming that the structure's 
response to applied loads aligned with anticipated behavior.

This research successfully determined the actual shape 
of the Robinson Bridge pylon at three distinct construc-
tion phases by employing TLS point cloud data and the 
RANSAC shape fitting method. The methodology, which 

(a)

(b)

Fig. 6 Deformation of the pylon toward (a) the Xc and (b) Yc directions
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included data transformation, point cloud slicing, and iter-
ative circle fitting, proved effective in analyzing the pylon's 
geometry and deformation. The assessment of RANSAC 
parameters revealed that 80  iterations and a tolerance of 
5 mm yielded reliable and consistent circle fitting results 
across all measurement stages with consistently low RMS 
errors (0–3 mm). While increasing the number of repeti-
tions initially improved the stability of the inlier percent-
age, it did not significantly enhance the final fitting qual-
ity beyond a certain point, suggesting an optimal balance 
between accuracy and computational efficiency.

The analysis of geometric distortions revealed that 
the pylon experienced the most significant changes after 

concrete pouring. Subsequent cable tensioning led to a 
partial recovery of the intended geometry. Furthermore, 
the horizontal deformation analysis along the pylon's axis 
indicated substantial displacements, reaching a maximum 
of −269 mm in tilt direction after completion of the con-
crete work. These deformations partially recovered and 
shifted direction after the cables were tensioned. The find-
ings underscore the efficacy of the presented methodology 
for detailed deformation monitoring of complex bridge 
pylons using point cloud data and robust fitting tech-
niques. The study also emphasizes the necessity of care-
ful RANSAC parameter selection to achieve accurate and 
dependable results in real-world structural assessments.
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