
Cite this article as: Alewe, M. K. "Plate Buckling Assessment of Unstiffened and Uniaxial Compressed Plates through Overall Imperfection Method", 
Periodica Polytechnica Civil Engineering, 2025. https://doi.org/10.3311/PPci.23657

https://doi.org/10.3311/PPci.23657
Creative Commons Attribution b |1

Periodica Polytechnica Civil Engineering

Plate Buckling Assessment of Unstiffened and Uniaxial 
Compressed Plates through Overall Imperfection Method

Mohammad Kheer Alewe1*

1 Department of Structural Engineering and Geotechnics, Faculty of Architecture, Civil Engineering and Transport Sciences, 
Széchenyi István University, Egyetem tér 1., H-9026 Győr, Hungary

* Corresponding author, e-mail: alewe.mohammad.kheer@sze.hu

Received: 17 October 2023, Accepted: 26 November 2024, Published online: 03 January 2025

Abstract

The Overall Imperfection Method (OIM) is a more comprehensive version of the Unique Global and Local Imperfection Method 

introduced for steel column design in EN 1993-1-1 standard. The generalized OIM is used to evaluate the stability resistance of steel 

members subjected to irregular load conditions. This study extensively examines the Overall Imperfection Method (OIM) used in 

analyzing plate buckling, explicitly focusing on steel grades such as S235, S355 and S460. It compares OIM with methods mentioned 

in EN 1993-1-5 (Annex B, GMNIA and winter curve). The research carefully validates OIM by analyzing Equation (13) (Annex B) across 

ratios and studying its behavior with various steel grades. The study highlights the importance of finding a balance when applying 

OIM regarding material properties and slenderness ratios. These findings provide insights for engineering professionals. Additionally, 

the research introduces a calibrated equation that allows for the application of OIM without exceeding the limits set by GMNIA. This 

simplifies its implementation in engineering practice.
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1 Introduction
1.1 General
Buckling is the main problem that many steel structural 
members suffer from, leading to decreased strength and 
loss of stability. There are two main types of buckling: 
global buckling and local buckling. For global buckling 
two alternative standardized methods are available to eval-
uate the resistance of steel members subjected to either 
uniform or no uniform loading. These are the General 
Method (EN 1993-1-1 [1]: paragraph 6.3.4; referred as 
GM) and the Overall Imperfection Method (EN 1993-
1-1 [1]: paragraph 5.3.2(11); referred as OIM). However, 
both methods have common theoretical bases. 

The OIM is the generalization of the Unique Global and 
Local Imperfection (referred as UGLI) method, which is 
introduced by the EN 1993-1-1 standard [1] and published 
by Chladný and Štujberová [2]. The original UGLI is valid 
for structural members subject to flexural buckling. Later, 
Agüero et al. [3] generalized the UGLI method for later-
al-torsional buckling, and Papp [4] extended the method 
to structural members sensitive to the interaction between 

flexural and lateral-torsional buckling. The application of 
the OIM was introduced in [5] for beam-columns with a 
greater variety of load conditions. In addition, the accu-
racy of the procedure was evaluated for beam columns 
subjected to various stress conditions [6]. It was discov-
ered that the OIM for structural member is safe and has 
a comparable level of safety to existing design method-
ologies. Szalai and Papp [7] published the most compre-
hensive description of the generalized OIM. Papp et al. [8] 
utilized the OIM to design irregular structural members 
and simple portal frames. Eventually, Nemer et al. [9] 
expanded the use of OIM for structural members at ele-
vated temperatures. 

All previous research has focused entirely on using 
the OIM for the design of steel beam-column members 
in the case of global buckling. However, the EN 1993-
1-5 [10] provides simplified methods for designing plated 
steel structures in the case of plate buckling, such as the 
Effective Width Method (referred to as EWM) and the 
Reduced Stress Method (referred as RSM). The aim of this 
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study is to examine whether the RSM and the OIM can 
be extended to the assessment of plate buckling and what 
about the accuracy of the methods.

1.2 OIM for buckling of beam-columns
As mentioned above, the current antecedent of the OIM 
defined in clause 5.3.2(11) of EN 1993-1-1 [1] is limited to 
members with flexural buckling mode due to pure com-
pression only. This regulation defines the amplitude of the 
overall geometrical imperfections having the shape of the 
relevant buckling mode resulting from the linear buckling 
analysis (LBA), and the equivalent amplitude of the initial 
geometrical imperfection is defined as follows:
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where the equivalent initial amplitude belongs to the 
Ayrton-Perry formulation calibrated by Maquoi and 
Rondal [11]:
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and where: 
• υcr,max is the magnitude corresponding to the shape of 

the elastic flexural buckling mode.
• EI cr��� ,max  is the moment of internal bending pro-

duced by the υcr buckle deformation.
• The λ̄ is the decreased slenderness for flexural buck-

ling mode.
• NRk is the capacity to withstand the distinctive axial 

force with consideration to the categorization of the 
cross-sectional shape. 

• The α is the factor accounting for imperfections in 
the context of the flexural buckling curve.

• The e0d is the comparable magnitude of initial imper-
fections manifested in the shape of a buckling mode, 
specifically for the fundamental scenario of flexural 
buckling.

• W and A are the elastic cross-sectional properties.

The idea and the application of the method have been 
published by Chladný and Štujberová in [2]. Fig. 1 shows 
the reference member for the flexural buckling mode, 
where υinit(x) is the shape of the imperfect member and υ(x)
is the deformation caused by the NEd compressive force. 
The υinit(x) can be written as follows:
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In Eq. (3) υcr(x) is the shape of the elastic buckling mode 
and υcr,max is the amplitude with arbitrary value. The υinit,max is 
the amplitude of the equivalent initial imperfection. The sec-
ond-order deformation can be expressed by linear approach:
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where αcr is the critical load factor. The second order bend-
ing moment is as follows:
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Considering the following equations,
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the initial imperfection of Eq. (3) can be obtained as 
follows [4]:
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Where the symbols are defined as follows:
• ��cr

II
,max

 is the maximum second-order normal stress 
from bending as the effect of the NEd compressive 
force with initial imperfection in the shape of the elas-
tic buckling mode with arbitrary amplitude υcr,max;

• ��init
II

,max

 is the maximum second-order normal stress 
from bending as the effect of the NEd compressive 
force with the calibrated value of the equivalent 
amplitude, considering Eq. (2).

Papp in [4] derived the equivalent amplitude υ0d for the 
reference case of LTB and showed that the formula of Eq. (7) 
is valid for lateral-torsional buckling mode too. Moreover, 
Papp [4] showed that the equivalent amplitude υ0d,NM derived 

Fig. 1 Fundamental case (reference member) for flexural buckling 
mode [4]
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for case of coupled buckling mode (Szalai et al., cited in 
Papp [4:pp.125, 128, 135]) provides reasonable accuracy: 
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Furthermore, for irregular member conditions Papp 
[4:p.129] used the following working hypothesis:

"In case of a member with irregular conditions (arbi-
trary supports; non-uniform cross-section; non-uniform 
distribution of internal forces), the ��init

II
,max

 maximum sec-
ond-order normal stress due to bending around the z axis 
and warping may be calculated on the reference mem-
ber. The reference member has the calibrated equivalent 
amplitude as well as load, cross-section and critical load 
taken into account in the reference point of the mem-
ber. The reference point coincides with the cross-section 
where the ��cr

II
,max

 second-order normal stress due to bend-
ing and warping as effects of the load with equivalent ini-
tial imperfection in the shape of the buckling mode with 
arbitrary amplitude has maximum value."

The control calculations and later wide range numerical 
verifications justified his assumption.

1.3 Aim of the research
The study's main goal was to evaluate the Overall 
Imperfection Method (OIM) in analyzing plate buck-
ling and its effectiveness with different types of steel. 
The researchers compared it to established methods out-
lined in EN 1993-15 [10], such as GMNIA, winter curve 
and Annex B of [10]. By examining OIMs' behavior related 
to slenderness; they identified situations where it either 
erred on the side of caution or fell short. Additionally, 
they extensively studied how material changes affected 
OIM predictions. One noteworthy achievement of this 
study was the creation of a linear equation that makes it 
easier to apply OIM in practice while ensuring accuracy 
within GMNIA limits.

2 Plate buckling design by EC3
2.1 General
In shipbuilding, thin-walled constructions, and construc-
tion industries, the phenomena of plate buckling caused 

by in-plane compressive or/and shear stress are import-
ant. Plate buckling may lead to a sudden and catastrophic 
failure, such as the collapse of the entire structure or 
a portion of it. Buckling is a significant issue, especially 
in thin-walled structures where the membrane rigidity 
is significantly greater than the bending stiffness [12]. 
The buckling resistance of steel-plated structures is spec-
ified in the EN 1993-1-5 standard [10]. The standard pro-
poses the following specific methods to calculate the plate 
buckling resistance: 

• Effective Width Method (EWM); 
• Reduced Stress Method (RSM) or Overall 

Imperfection Method (OIM); 
• Geometrically and Materially Nonlinear Analysis 

with Imperfections (GMNIA). 

The EWM approach is relevant for traditional manual 
calculation, and it is out of the focus of this paper, while 
GMNIA is mostly a tool for researchers. However, engi-
neering practice requires an intermediate approach using 
Geometric Nonlinear elastic Analysis with imperfection 
(GNIA), Linear Buckling Analysis (LBA) and buckling 
curve developed for reference plate buckling. RSM or 
alternatively the OIM are these types of design approach.

2.2 Design methods
2.2.1 General method
The Reduced Stress Method (RSM) may be used to deter-
mine stress limits for stiffened or unstiffened plates. 
The formula is specified in Section 10 of EN 1993-1-5 [10]. 
The RSM design formula is similar to the General Method 
introduced by the Section 6.3.4 of EN 1993-1-1 [1] for 
beam-columns: 
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In Eq. (9) αult,k is the minimum load amplifier for the 
design load to reach the characteristic value of the yield-
ing resistance in the critical point of the plate without plate 
buckling taking into account,
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where the equivalent stress can be calculated as 
follows [13]:
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In Eq. (9) ρ is the reduction factor which may be calcu-
lated according to the Annex B of EN 1993-1-5 [10] infor-
mative formula:
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is the generalized plate slenderness. The values of λp0  and 
αp parameters can be found in Table 1. Computation of 
both αult,k and αcr load amplifiers may be carried out by 
numerically using elastic shell finite element method. 

2.2.2 Overall imperfection method
Additionally, to the general design method, the EN 1993-
1-5 [10] alternatively proposes the overall imperfection 
method where the following equivalent amplitude can be 
used for the initial geometrical imperfection in the shape 
of the plate buckling mode (if γM1 = 1.0):

e t
p p p0 0

6
� �� �� � �  (13)

where t is the plate thickness. Using this equivalent geo-
metrical imperfection, if the maximum normal stress com-
puted by geometrically nonlinear elastic analysis (GNI) is 
equal to the characteristic yield stress, the plate buckling 
limit state is just reached: the evaluation of the plate buck-
ling limit state can be drawn back to the evaluation of the 
first yielding limit state based on second order stress anal-
ysis. The second order stress analysis may be carried out 
by numerically using shell finite element analysis.

2.2.3 Geometrically and materially nonlinear analysis 
with imperfection
In case of plate panels, for the geometrically and materially 
non-linear analysis (GMNIA) characteristic values for the 

model parameters are mostly used, consequently the shell 
or even more complex finite element methods are capable 
to directly capture the design value of the local buckling 
phenomenon. This requires the consideration of material 
nonlinearities. According to the Annex C of EN 1993-
1-5 [10] the geometrical imperfection can be considered 
with b/200 amplitude, where b is the width of the unstiff-
ened panel. For the shape of the geometrical imperfection 
the relevant buckling modes can be used. Besides this geo-
metrical imperfection, if the panel is part of a cross-sec-
tion (e.g., it is the web plate of an I cross-section) residual 
stress should also be applied for the numerical model.

2.3 Working example
Simply supported square plate subjected to uniaxial com-
pressive stress (ψ = 1) shown in Fig. 2 will be analyzed 
using the EC3 conform methods presented in Section 2.2. 
The dimensions of the plate are a = b = 1500 mm (α = a/b = 1) 
and the plate thickness is t = 8 mm. The parameters of the 
applied bi-linear material are as follows: E = 210000 N/mm2,  
G = 80700 N/mm2, fy = 355 N/mm2 and E/10000 hardening 
slope. The design line load is p = 719.22 N/mm.

2.3.1 Applied numerical model
Fig. 3 [14] illustrates the meshing and support system 
employed for the panel under examination. This model 
served as the basis for conducting various analyses in this 
paper, where it was applied changing of the value of the 
slenderness (b/t) from 375 to 30. Fig. 4 illustrates the accu-
racy of the model. The vertical axis of Fig. 4 represents 
the buckling reduction factor (ρ), while the horizontal 
axis denotes the relative slenderness (λp ). In the study 
of Zizza [15] the slenderness b/t was varied from 30 to 
250 by altering the plate's dimensions while maintaining a 
constant thickness of 6 mm. For example, when b/t = 250, 

Table 1 Values for λp0  and αp parameters

Product Predominate buckling mode αp λp0  

Hot rolled

Direct stress for ψ ≥ 0

0.13

0.7

Direct stress for ψ < 0 0.8

Shear stress 0.8

Transverse stress 0.8

Welded or cold-formed

Direct stress for ψ ≥ 0

0.34

0.7

Direct stress for ψ < 0 0.8

Shear stress 0.8

Transverse stress 0.8
Fig. 2 The examined simple supported square plate panel
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the plate's dimensions were set as a = b = 1500 mm with 
thickness of 6 mm. Also, Schönfeld et al. [16] used the 
same material and boundary conditions and stress ration 
of Zizza's [15] study, he was applied different shape of 
imperfections but in current study it will concentrate on 
uses just equivalent geometric imperfection when apply-
ing GMNIA. The used boundary condition prevents the 
nodes to move along the loaded edge freely, this type of 
boundary conditions have been used before by Braun [17] 
and Rusch and Lindner [18] because of they gave the best 

corresponding with winter curve. The amplitude of the 
geometrical imperfection in the shape of the plate buck-
ling mode was b/200 same as assumed by Zizza [15], (see 
the Annex C in EN 1993-1-5 [10]). One can see that GMNI 
analysis gave the same buckling curve as Zizza's [15] com-
putations. Therefore, the author bases the computations 
presented in this paper on this numerical model.

Using the validated model, the buckling resistance of 
the examined panel will be calculated using the different 
EC3 methods (see Section 2.2). 

2.3.2 Buckling resistance by RSM
The reduced stress method (RSM) introduced by 
EN 1993-1-5 [10] has the following steps: 

1. Step 1: Minimum load amplifier
The equivalent stress and the minimum load ampli-
fier can be computed with first order stress analysis 
(Eq. (10) and Eq. (11)):

� eq Ed, .� 89 9 N/mm2  
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. 

2. Step 2: Critical load amplifier
Executing linear buckling analysis (LBA) the crit-
ical load amplifier and the buckling shape are 
obtained (Fig. 5):

�cr � 0 24. . 

Fig. 3 Finite element model of the examined simply supported square 
plate (Abaqus [14] shell FE model with S4R shell element)

Fig. 5 Critical load amplifier and buckling mode

Fig. 4 Validation of the applied numerical model by Zizza's [15] results 
and Schönfeld et al. [16]
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3. Step 3: Reduced plate slenderness
According to the results of Step 1 and Step 2, the 
reduced plate slenderness is as follows:

�
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4. Step 4: Buckling reduction factor
The buckling reduction factor can be calculated with 
Eq. (12) using the slenderness given in Step 3 and the 
following parameters obtained from Table 1:
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5. Step 5: Buckling resistance
The starting design load causes the following utiliza-
tion of the buckling resistance (Eq. (9)):

U M
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If the above utilization U is just 1.0, the applied is the 
buckling resistance qb,RSM. This leads to an iterative 
procedure:

qb, .
RSM

2
N/mm= 520 7 . 

2.3.3 Buckling resistance by OIM
The overall imperfection method (OIM) introduced by 
EN 1993-1-5 [10] has the following steps: 

1. Step 1: Minimum load amplifier
The equivalent stress and the minimum load ampli-
fier can be computed with first order stress analysis 
(Eq. (10) and Eq. (11)):

� eq Ed, .� 89 9 N/mm2 . 

2. Step 2: Critical load amplifier

�cr � 0 24.  

3. Step 3: Reduced plate slenderness
According to the results of Step 1 and Step 2, the 
reduced plate slenderness is as follows:
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4. Step 4: Equivalent amplitude (e0)
According to Step 3 and the Eq. (13) it can calculate 
the equivalent amplitude as follows:

e t
p p p0 0

6
0 34 4 0567 0 7

8

6

1 5217
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. mm.

 

5. Step 5: Calculate the maximum stress by applying 
GNIA with e0 as imperfection
In this stage, GNIA will assess the maximum stress 
and then compare it to the yield stress. To obtain reli-
able results, the maximum stress needs to be either 
less than or equal to the yield stress. Regrettably, 
it was observed that the maximum stress exceeded 
the yield stress, as illustrated in Fig. 6. This implies 
that the applied load, calculated using GMNIA, sur-
passes the ultimate load determined by OIM.

�
max,

.
OIM

NOT OK� �520 2 355  

6. Step 6: Determine the ultimate load of OIM
It was applied iteration by Python program [19] to 
reach to the ultimate load of OIM (qult,OIM = 584.5) 
where the maximum stress equal to yielding stress 
(σmax,OIM = fy = 355 MPa) as shown in Fig. 7. 

2.3.4 Buckling resistance by GMNIA
It was utilizing GMNIA to calibrate the RSM and OIM 
results. According to Annex C of EN 1993-1-5 [10] 
and [13]. To apply GMNIA, it was applied equivalent geo-
metric imperfection as mentioned in Section 2.3.1 in the 
shape of buckling mode (Table 2). 

Fig. 6 Position and value of the maximum stress by applying GNIA 
with e0 (in case of t = 8 mm)
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Fig. 8 depicts the correlation between the maximum 
load achieved by GMNIA and the corresponding maxi-
mum displacement. It is evident that the maximum load, 
denoted as qult,GMNIA, equals 719.22 N/mm. Additionally, 
the ultimate load value in Annex B of [10] is the most con-
servative, being the lowest among all. Furthermore, the 
ultimate load in OIM is noticeably distant from GMNIA 
and WINTER, but it is somewhat closer to Annex B 
of [10], with a difference of approximately 12.4%. In sum-
mary, GMNIA yields results more significant than any 
other method when dealing with slender plates. At the 
same time, Annex B of EN 1993-1-5 [10] produces the 
lowest values—conversely, employing the e0 Eq. (13) men-
tioned earlier results in a more conservative outcome than 
GMNIA or Winter. This suggests that further verification 

is necessary to determine the suitable range of applica-
tions for the equation derived by Müller [20].

Fig. 9 shows the distribution of stresses at the ultimate 
buckling load of GMNIA.

2.4 Literature review about equivalent geometric 
imperfection in plate buckling
Equivalent geometric imperfections in unstiffened plate 
buckling have been extensively examined. In a study by 
Schönfeld et al. [16], the ultimate load resulting from com-
pressive stress was compared using various methods to 
account for imperfections. It was observed that adjusted 
equivalent geometric imperfections achieved favorable 
agreement with the Winter curve in the construction 
industry [16]. Paudel et al. [21] conducted an investigation 
on the impact of random initial geometric imperfections 
on the buckling limit load of composite cylindrical shells. 
They emphasized the significance of considering geo-
metric imperfections during the design phase [21]. Zhang 
et al. [22] proposed a novel analytical model to address the 
buckling problem of plates with uncertain initial geomet-
ric imperfections. They utilized a double trigonometric 
series to depict the imperfections [22]. In a study by Liu 
et al. [23], the nonlinear dynamic response of thermally 
loaded composite plates with initial geometric imper-
fections was analyzed. The findings revealed that the 
imperfections delayed the onset of the critical state [23]. 
Zingoni [24] employed the concept of equivalent geo-
metric imperfections to assess the buckling resistance 
of beams subjected to bi-axial bending. They suggested 
modifications to the predictions of critical moments [24].

Fig. 7 Position and value of the maximum stress by applying GNIA 
with e0 (in case of t = 8 mm)

Table 2 Values of geometric imperfections that are used in GMNIA

t (mm) b/t e0 (mm) = b/200 Annex C [10]

8 187.5 7.5

Fig. 8 Load vs. displacement curve obtained of GMNIA  
(in case of t = 8 mm) Fig. 9 Distribution stress at the ultimate buckling load of GMNIA
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On the other hand, the Geometrical and Materially 
Nonlinear Imperfection Analysis (GMNIA) technique is 
utilized to identify equivalent geometric imperfections for 
local buckling of slender box-section columns. The aim 
of this technique is to estimate the interaction buckling 
resistance of high-strength steel box-section columns by 
incorporating equivalent imperfections in nonlinear plas-
tic analysis. In order to find these equivalent imperfec-
tions, Radwan and Kövesdi [25–28] and Wang et al. [29] 
conducted research and developed numerical models 
to perform parametric studies. These models were vali-
dated to ensure accurate estimation of buckling capaci-
ties. Subsequently, these accurate buckling capacities 
were used to calibrate equivalent local and global imper-
fection combinations that can be applied in Finite Element 
Method (FEM)-based design. To ensure the safety level 
of the design, the proposed imperfection combinations 
were also subjected to reliability assessment. The out-
comes of these studies can be utilized to determine the 
accurate buckling resistance and facilitate the FEM-based 
design approach for slender box-section columns made of 
high-strength steel. All the previous studies tried to find 
an approximate equivalent geometric imperfection to cal-
culate buckling resistance by applying GMNIA. In con-
clusion, this study will focus on verifying the equation 
mentioned in Annex B of [10] and finding modifications if 
applying it to the range of relative slenderness by GNIA.

2.5 Verify the Annex B of EN 1993-1-5
In this section, the study rigorously validates the pre-
viously mentioned equivalent amplitude Eq. (13). This 
verification process involves applying the ultimate load 
derived from GMNIA across a range of slenderness ratios 
(b/t, varying from 375 to 30) achieved by adjusting plate 
thickness (ranging from 4 to 50 mm). The procedures out-
lined in Section 2.3.3 are meticulously followed, maintain-
ing material properties and plate dimensions. The intricate 
relationship between the maximum stress of OIM and the 
stress obtained by applying GNIA with e0 (Eq. (13)) con-
cerning the slenderness of both unstiffened and square 
plates is depicted in Fig. 10. Remarkably, σmax,OIM surpasses 
the yielding stress for slenderness values ranging from 375 
to 60, achieving equilibrium at b/t = 60. This signifies that 
the ultimate load obtained from GMNIA exceeds OIM's 
ultimate load. Conversely, reducing the slenderness below 
60 diminishes OIM's maximum stress, resulting in OIM's 
ultimate load surpassing that of GMNIA.

Based on identical values of e0 (Eq. (13)), an investiga-
tion was conducted to determine the ultimate load, ensur-
ing that the maximum stress remained below the yielding 
stress using Python [19] in conjunction with Abaqus [14]. 
Fig. 11 illustrates how the load varies with thickness for 
each method employed (Annex B of EN 1993-1-5 [10], 
Winter (ψ = 1), GMNIA with e0 = b/200, and OIM (GNIA 
with e0 (Eq. (13)))). Notably, the GMNIA method, incor-
porating equivalent geometric imperfections, aligns 
closely with the winter curve, as previously mentioned. 
Conversely, the ultimate load calculated by the guide-
lines outlined in Annex B of EN 1993-1-5 [10] yields the 
most conservative load values. Furthermore, ultimate 
load estimations based on the GNIA method, incorpo-
rating e0 (Eq. (13)) as an imperfection, yield more con-
servative results than those obtained through the winter 
or GMNIA methods but more significant than the values 
from Annex B of [10]. Interestingly, at specific thickness 
values t = 25 mm, the load curve exhibits fluctuations 

Fig. 10 Relation between the maximum stress of OIM and slenderness 
(b/t) in case of unstiffened and square plate

Fig. 11 Ultimate load of four methods (Annex B of EN 1993-1-5 [10], 
Winter (ψ = 1), GMNIA with e0 = b/200, and OIM (GNIA with e0 

(Eq. (13))))
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where the load exceeds that of the winter or methods. This 
suggests that the accuracy of e0 in this scenario may need 
refinement to ensure that loading remains below the ulti-
mate load of GMNIA.

To address the challenge, a systematic approach was 
adopted involving an iterative process to determine an accu-
rate value of e0, ensuring that the maximum stress aligns pre-
cisely with the yielding stress. By achieving this equilibrium, 
it was ascertained that the applied load remained well within 
the limits of the ultimate load derived from the GMNIA 
method. Fig. 12 visually depicts the correlation between 
the relative slenderness (λp ) and the adjusted imperfection 
parameter e0. The primary objective of this correlation was 
to establish a direct link between imperfection and relative 
slenderness. The process involved transforming the actual 
structural behavior into a linear approximation across vari-
ous ranges of relative slenderness (as illustrated in Fig. 12). 
This approach enables engineers dealing with compressive 
square plates to employ the GNIA method with the modified 
e0, obviating the need for intricate analyses akin to GMNIA 
where this is the main goal of OIM. Consequently, this 
streamlined methodology translates to significant time and 
effort savings. The derived equations it will be as follows:

If MPa Table 1

modified

f

e

y p p

p

� � � � �
� �

�

355 0 34 0 7

1 08 1 3

0

0
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. .
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� �
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. .

. .

. .

. .
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�

�
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p

p
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e

modified

00

0

0 36 2 414
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,

,

. .

. .

. .

modified
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� �

� �

� � �

�

�

�

p

p

e pp .
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Utilizing the equations mentioned above, a noteworthy 
observation emerged: the reduction curve associated with 
the GNIA method, incorporating e0, closely follows the 
reduction curve of GMNIA with e0 = b/200. This align-
ment is particularly pronounced within the range of rela-
tive slenderness, reaching up to 1.3 and extending down to 
0.7, as illustrated in Fig. 13. 

2.5.1 Influence changes the material on the value of e0 
(Eq. (13))
In previous research, material properties played a pivotal 
role. Radwan and Kövesdi [25] explored this impact by 
formulating equivalent geometric imperfections for box 
section columns in various materials (S235, S355, S460). 
Additionally, Somodi et al. [30] conducted a numerical 
study comparing NSS (S235-S355) and HSS (S420-S960) 
to assess local buckling resistance in welded box sections. 
This study delves into three steel grades (S235, S355, S460) 
and analyzes their influence on the buckling curves of four 
methods, emphasizing the material's effect on the e0 value.

2.5.2 Using steel grade S235
Fig. 14 illustrates the correlation between the reduc-
tion factor and relative slenderness for steel grade S355. 
The numerical study's buckling curve aligns well with 
the winter curve, while Annex B of EN 1993-1-5 [10] 
demonstrates a more conservative approach than winter 
or GMNIA. Fig. 15 depicts the relationship between the 
maximum stress of OIM and slenderness (b/t). Notably, 
the maximum stress of OIM equals the yielding stress at 
b/t = 75, mirroring the behavior observed in steel grade 
S355 (refer to Fig. 10). Fig. 16 reveals that the ultimate 
load of OIM surpasses (winter, GMNIA, or Annex B 
of [10]) values after a thickness of t = 20 mm (b/t = 75). 
Employing the methodology outlined in Section 2.5 

Fig. 12 Original and approximate curve of value of e0,modified 
in relationship with relative slenderness λp

Fig. 13 Buckling curve of GMNIA, OIM with e0, and OIM with 
e0,modified of unstiffened and square plate
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ensures an accurate determination of e0,modified, preventing 
the maximum stress of OIM from exceeding the yielding 
stress as shown in Fig. 17. The derived equations it will 
be as follows:

If MPa Table 1

modified

f

e

y p p

p

� � � � �
� �

�
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1 2 1 3

1

0

0

, . , .

. .

,

� �
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11 71 8 304

0 98 1 2

6 465 3 93

0 83 0
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e
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0 917

0

0

e

e
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p

,

,

. .

. .

.

modified
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� �

� �

� � �

�

�

44 054. .�p
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Utilizing the equations mentioned above, a noteworthy 
observation emerged: the reduction curve associated with 
the GNIA method, incorporating e0, closely follows the 
reduction curve of GMNIA with e0 = b/200. This align-
ment is particularly pronounced within the range of rela-
tive slenderness, reaching up to 1.325 and extending down 
to 0.7, as illustrated in Fig. 18.

Fig. 14 Buckling curve of GMNIA, Winter, Annex B of unstiffened and 
square plate

Fig. 15 Relation between the Maximum stress of OIM and slenderness 
(b/t) in case of unstiffened and square plate

Fig. 16 Ultimate load of four methods (Annex B of EN 1993-1-5 [10], 
Winter (ψ = 1), GMNIA with e0 = b/200, and OIM (GNIA with e0 

(Eq. (13))))

Fig. 17 Original and approximate curve of value of e0,modified 
in relationship with relative slenderness λp

Fig. 18 Buckling curve of GMNIA, OIM with e0, and OIM with 
e0,modified of unstiffened and square plate
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2.5.3 Using steel grade S460
It can see the same observation that mentioned in the 
Section 2.5.2 (Fig. 14) as shown in Fig. 19. Fig. 20 depicts 
the relationship between the maximum stress of OIM and 
slenderness (b/t). Notably, the maximum stress of OIM 
equals the yielding stress at b/t ≈ 50, mirroring the behav-
ior observed in steel grade S355 (refer to Fig. 10). Fig. 21 
reveals that the ultimate load of OIM surpasses (winter, 
GMNIA, or Annex B of [10]) values after a thickness 

of t = 29.5 mm (b/t ≈ 50). Employing the methodology 
outlined in Section 2.5 ensures an accurate determina-
tion of e0,modified, preventing the maximum stress of OIM 
from exceeding the yielding stress as shown in Fig. 22. 
The derived equations it will be as follows:
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Utilizing the equations mentioned above, a noteworthy 
observation emerged: the reduction curve associated with 
the GNIA method, incorporating e0, closely follows the 
reduction curve of GMNIA with e0 = b/200. This align-
ment is particularly pronounced within the range of rela-
tive slenderness, reaching up to 1.262 and extending down 
to 0.7, as illustrated in Fig. 23.

3 Discussion the results
This study delved into applying the Overall Imperfection 
Method (OIM) in plate buckling, initially exploring its rele-
vance in line beam-columns. The focus shifted to EN 1993-
1-5 [10], comparing OIM with Annex B of [10], GMNIA, 
and the winter curve. The methodology was rigorously mod-
elled and validated against prior research by Zizza [15] and 
Schönfeld et al. [16]. The paper extensively examined the 

Fig. 19 Buckling curve of GMNIA, Winter, Annex B of unstiffened 
and square plate

Fig. 20 Relation between the maximum stress of OIM and slenderness 
(b/t) in case of unstiffened and square plate

Fig. 21 Ultimate load of four methods (Annex B of EN 1993-1-5 [10], 
Winter (ψ = 1), GMNIA with e0 = b/200, and OIM (GNIA with e0 

(Eq. (13))))
Fig. 22 Original and approximate curve of value of e0,modified 

in relationship with relative slenderness λp
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application of Eq. (13) (Annex B of EN 1993-1-5 [10]), par-
ticularly assessing its conservative or unconservative out-
comes across various slenderness ratios (b/t from 375 to 30). 
Additionally, the study investigated the influence of steel 
grade on plate behavior and its impact on e0. This explora-
tion facilitated modifications of e0 within specific slenderness 
ranges, providing streamlined equations for applying GNIA 
with modified equivalent amplitudes in instances where 
unconservative buckling resistance values were obtained. 

In scenarios involving unstiffened and square plates 
subjected to uniaxial compressive loads, the study metic-
ulously examined the behavior concerning relative slen-
derness (λp ) for instances where 1.325 < λp , OIM's reduc-
tion factor and the values calculated using Eq. (13) closely 
aligned with Annex B of [10], albeit with a slightly less 
conservative stance. Conversely, when 1.325 > λp  ≥ 0.7, 
OIM's reduction factor surpassed those of GMNIA and 
Winter (Fig. 18). This discrepancy necessitated modifica-
tions, as outlined in Section 2.52 (Case S235).

The buckling resistance exhibited nuanced changes 
upon transitioning to the S355 material grade. For slen-
derness values falling within 1.3 < λp , OIM's reduction 
factor and the values derived from Eq. (13) closely mir-
rored Annex B of [10], albeit with a more lenient estimate. 
However, when 1.3 > λp  ≥ 0.7, OIM's reduction factor 
exceeded those of GMNIA and Winter (Fig. 13), demand-
ing meticulous adjustments as detailed in Section 2.5.

In the context of steel grade S460, distinct alterations in 
behavior emerged. For relative slenderness between 1.262 
and 0.7, OIM closely shadowed the predictions of Annex B 
of [10]. However, when λp  surpassed 1.262, reaching val-
ues of ≥0.7, Eq. (13) required rigorous scrutiny and modi-
fication (Fig. 23, Section 2.5.3).

These findings emphasize the intricate balance required 
in applying OIM, particularly concerning material proper-
ties and slenderness ratios, underscoring the study's valu-
able contributions to structural engineering.

4 Conclusions
The primary focus of this study was to explore the viability 
of employing the (OIM) for plate buckling using Eq. (13) 
(Annex B of EN 1993-1-5 [10]). This equation, initially 
derived by Müller [20], was specifically tailored to calcu-
late buckling resistance using the (GNIA), eliminating the 
need for complex analyses such as the Geometrically and 
Materially Nonlinear Imperfection Analysis (GMNIA). The 
research meticulously applied various methods outlined in 
EN 1993-1-5 [10], including GMNIA (Annex C of [10]), 
Winter's method (Section 4 of EN 1993-1-5 [10]), the 
Reduced Stress Method (Annex B of EN 1993-1-5 [10]), 
and OIM via Eq. (13) (Annex B of [10]). To assess the 
equation's accuracy, alterations in slenderness and material 
properties were systematically conducted in cases where 
Eq. (13) yielded non-conservative resistance values within 
specific slenderness ranges, and precise values for the 
imperfection amplitude (e0) were determined. These cali-
brated values ensured that the calculated resistance aligned 
with GMNIA without surpassing the Winter curve. In sum-
mary, the study's findings provide crucial insights into the 
practical application of OIM, highlighting the significance 
of accurately determining imperfection parameters for 
robust structural analyses. Based on the findings presented 
in this study, several significant conclusions can be drawn:

• The GMNIA method, when utilizing equivalent geo-
metric imperfections, exhibited consistent alignment 
with the winter curve across various steel grades 
(S235, S355, S460).

• Per Annex B of EN 1993-1-5 [10], the buckling curve 
consistently provided more conservative values than 
the winter curve, GMNIA, or OIM methods.

• The buckling curve derived from OIM yielded values 
that were more conservative than the winter or GMNIA 
methods but less conservative than Annex B of [10].

• The buckling curve of OIM became unconservative 
compared to winter or GMNIA beyond a specific 
value of relative slenderness.

• Altering the material resulted in a shift in the rel-
ative slenderness range, causing OIM to provide 
unconservative resistance values.

• The derived linear equation allows engineers to 
apply OIM without exceeding GMNIA's buckling 
curve, ensuring simplified application using GNIA.

Fig. 23 Buckling curve of GMNIA, OIM with e0, and OIM with 
e0,modified of unstiffened and square plate
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Nomenclature
Latin upper case letters
A cross-sectional area.
B internal bimoment.
E elastic modulus.
fy yield stress.
G shear modulus.
Iy, Iz moment of inertia with respect to y and z axes.
It St. Venant torsional constant.
Iω warping moment of inertia.
L length of members.
My,sec, 
Mz,sec

resistance to bending moments along both strong 
and weak cross-sectional axes.

Mcr critical bending moment for lateral torsional 
buckling. 

Mcr,NM critical bending moment for coupled buckling.
M

init

II
υ

 2nd order bending moment regarding to υII.
M

cr

II
υ

 2nd order bending moment regarding to υcr.
Ncr,x the essential elastic compressive force needed for 

torsional buckling exclusively around the longitu-
dinal axis.

Ncr,y the necessary elastic compressive force for induc-
ing pure flexural buckling along the strong axis.

Ncr,z the essential elastic compressive force needed to 
initiate pure flexural buckling along the weak axis.

Ncr,NM critical force for coupled buckling.
Wy, Wz section modulus regarding to y and z axes and the 

class of section.
U the utilization of cross-sectional strength.
Latin lower case letters
a, b dimension of plate.
r0 polar radius of gyration.
t thickness of the plate.
υ full flexural deformation of members with 

imperfections.
υII flexural 2nd order deformation of members with 

imperfections.
υcr the shape's elastic buckling mode is related to 

bending.

���cr
 

2nd derivative of υcr.
υcr,max magnitude of υcr.
υinit initial flexural imperfection.
υinit,max magnitude of υinit.
υ0d the equivalent magnitude of the original imperfec-

tion in terms of flexural buckling mode for the fun-
damental scenario of lateral-torsional buckling.

υ0d,NM the magnitude that corresponds in terms of flex-
ural behavior to the original imperfection, taking 
the form of a buckling mode, within the funda-
mental scenario of coupled buckling.

ν Poisson's ratio
Greek lower case letters
α aspect ratio
αb amplification of the members' load to buckling 

mode.
αLT the parameter representing the degree of imper-

fection in the lateral torsional buckling curve.
αcr amplifier for the load that must be sustained by 

members in order to achieve the elastic critical 
buckling load.

αult for the design loads to attain the characteris-
tic resistance value at the member's most crucial 
place, the least load amplifier is necessary.

αp imperfection factor for plate buckling.
γM0  

cross-sectional resistance partial safety factor.

λp0

 
global non-dimensional slenderness.

λp
 the plate slenderness for plate buckling.

μ interaction parameter in the generalized imper-
fection factor.

σcr,p elastic critical bulking stress in case of plate 
buckling.

σx,Ed, 
σz,Ed

design uniaxial and compressed stress in x and z 
direction.

ρ reduction factor for plate buckling.
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