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Abstract

Considering uncertainty in the analysis of geotechnical structures is a necessary condition for optimal and robust design. An alternative 

method for studying the reliability of a mechanically reinforced earth wall in granular soil is used to account for these uncertainties 

more rigorously. This allows for the inclusion of various uncertainties in a mathematical risk formulation based on random variables. 

The deterministic model is a benchmark taken from the literature used in a numerical simulation to determine the maximum horizontal 

displacement of the wall. In this case, the serviceability limit state is considered, allowing the wall's actual behavior to be described. 

ANOVA was used to identify the most influential parameters on the system's response. As uncorrelated random variables, only the 

parameters (E, φ and γ) were considered. The mathematical model serving as the limit state function was numerically predictedby 

three methods, response surface methodology (RSM), artificial neural network (ANN) and Adaptive Neuro-Fuzzy Inference System 

(ANFIS), and their predictive capacities were then compared. The results showed that the ANN model outperformed the RSM and 

ANFIS models regarding prediction. ANN models and multi-objective genetic algorithm (MOGA) are used to optimize the Hasofer-Lind 

reliability index. The analysis is then carried out by taking into account the various types of functions of parameter distributions, which 

allowed us to better appreciate the effects of the uncertainties and identify the set of parameters with a high incidence.
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1 Introduction
Traditionally, the behavior of reinforced soil walls has 
been studied using deterministic methodologies that 
account for geotechnical parameter uncertainties using a 
global safety factor. The probability theory is used to more 
accurately account for uncertainty. We can account for the 
uncertainty associated with each parameter by using its 
probability distribution. Furthermore, these methods have 
the advantage of responding to the system (safety factor, 
maximum displacement) not only by its mean but also by 
its mean and standard deviation, reliability index, or prob-
ability of failure. As a result, reliability approaches enable 
considering the propagation of uncertainty related to the 
input parameters and the resulting system response by uti-
lizing a mechanical model of the system under study.

Given the significant importance of reinforced soil 
structures, various numerical techniques,such as finite 

element (FE) and finite difference (FD), have been used 
for their performance-based design [1]. The variability of 
the geomechanical properties of soils justifies the reliabil-
ity analysis of retaining walls. Recent studies of reinforced 
retaining walls have considered variations in reinforcing 
properties [2]. Yu and Bathurst [3] studied the engineering 
design optimization and the application of Monte Carlo 
simulation to evaluate the Hasofer–Lind reliability index. 
Several studies have been conducted on the lateral wall 
deformation of reinforced retaining walls.

The response surface methodology (RSM) has recently 
been used successfully in many fields of civil engineering. 
It simulates material behavior, structural problem optimi-
zation, experimental estimation, and concrete mix pro-
portions. Karakayali  et  al.  [4] used a probabilistic analy-
sis of embankments to integrate the finite element, limit 
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equilibrium, and RSM. Ghorbani and Sharifzadeh  [5] 
applied the RSM to evaluate the Hasofer Lind reliabil-
ity index in the case of a probabilistic analysis of a circu-
lar tunnel. Cepuritis  [6] used RSM and the Second-order 
Reliability Method (SORM) to conduct a probabilistic 
investigation of rock excavation, taking the quadratic poly-
nomial and cross terms into account to evaluate the limit 
state function. Hamrouni et al. [7] applied the GA to opti-
mize the RSM for several geotechnical projects. Lafifi and 
Rouaiguia [8] investigated the reliability analysis of a shal-
low foundation using a combination of RSM and MOGA.

The ANN method has also been very successful in geo-
technical engineering problems. ANNs were first applied in 
the early 1990s [9]. Khan et al. [10] used this tool to predict 
the residual strength of clay using data from the literature 
and a new prediction model, functional networks (FNs). 
Jahed Armaghani  et  al.  [11] used 132  data sets to inves-
tigate the ANN in conjunction with the PSO algorithm to 
model the bearing load of socketed piles. Cheng et al. [12] 
proposed a new ANN-based RSM for predicting the fail-
ure probability of structures in conjunction with the uni-
form design method. In the case of a probabilistic slope 
stability analysis, Shu and Gong  [13] integrated an ANN-
based response surface to approximate the limit state func-
tion. Haeri et al. [14] investigated using a relatively simple 
nonparametric regression algorithm, multivariate adaptive 
regression splines (MARS), as an alternative to neural net-
works to approximate the relationship between pile strength 
and pile hammer impact stresses. Zhang et al. [15] proposed 
using a neural network (NN) tool to implement Monte Carlo 
Simulation (MCS) to overcome time-consuming numerical 
analysis for evaluating the impact of tunnel construction in 
a complex karst environment. Li and Yang [16] presented 
an ANN combined with RSM to demonstrate the probabilis-
tic performance of geosynthetic reinforced soil.

The ANFIS approach has been used to predict the per-
formance and stability of soil and rock formations, founda-
tions, and other geotechnical structures in various geotech-
nical reliability studies. ANFIS was used by [17] to predict 
the bearing capacity of shallow foundations on cohesion-
less soils. The study created a model that considered soil 
parameters like relative density and angle of internal fric-
tion. Xue and Yang [18] used ANFIS to predict soil lique-
faction potential during earthquakes. The study created 
a model considering a large database of liquefaction case 
histories. Harandizadeh et al.  [19] used improved ANFIS 
to predict the bearing capacity of pile foundations in clay. 

The  study developed a model that forecasted bearing 
capacity by considering information about different prop-
erties of soils and driven piles obtained from CPTs results.

This study presents a probability analysis of a mechan-
ically stabilized earth wall reinforced by geosynthetics 
using the first-order reliability method to evaluate the 
Hasofer-Lind reliability index βHL and the probability of 
failure (FORM). The deterministic model of the prob-
lem is generated by a two-dimensional numerical model 
created with the commercial software Plaxis  [20], the 
treated problem's random variables are the geotechni-
cal parameters of the soil, and the output response is the 
maximum horizontal displacement of the wall, denoted as 
Uhmax. A statistical tool based on the Analysis of Variance 
(ANOVA) was used to define the parameters influencing 
the maximum horizontal displacement of the wall used 
in the study to reduce the computational time required to 
generate the finite element models. RSM, ANN and ANFIS 
techniques were then used to predict the mathematical 
models relating to output responses and retained random 
variables. A comparison of these regression models is also 
carried out. Finally, the reliability index and failure prob-
ability are optimized using ANN models and the MOGA. 
This study also includes evaluating the design points and 
partial safety factors. Section 2 provides a detailed illus-
tration of the adopted methodology.

2 Probabilistic approach
The probabilistic approach explicitly considers the uncer-
tainties in strength and loads. The probability that the load 
exceeds the strength is expressed as 

P S R P R S P Z x�� � � � �� � � � � �� �0 0 ,	 (1)

where X =  [x1, x2, …, xn] is the set of random variables, 
and Z(x) represents the limit state function or performance 
function, with:

•	 Z(x) = 0 Limit state (boundary)
•	 Z(x) > 0 Let be the domain of safety
•	 Z(x) < 0 Let be the domain of failure.

Reliability, therefore, amounts to the direct integration 
of the joint density function expressed by 

P f x dxf
Z x

� � �
� ��
�

0

.	 (2)

Where, f(x) represents X 's joint probability density 
function.
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In practice, random variables are not explicitly men-
tioned in the limit state function, and the joint probability 
density function becomes unattainable for many random 
variables. Most of the time, we must settle for marginal 
laws relating to each random variable X. As a result, 
depending on the correlation of variables and the complex-
ity of integration, this integral can rarely be studied ana-
lytically or even numerically. Various resolution methods 
have been developed to overcome these difficulties [21].

2.1 First-Order Reliability Method (FORM)
The probability of failure Pf or the reliability index β, defined 
by Hasofer and Lind [22] in 1974, is used to assess a struc-
ture's safety by considering these uncertainties from a prob-
abilistic standpoint. The authors generalized the approach 
and provided an exact and invariant definition for the reli-
ability index. Its matrix formulation is as follows [21]:

� � �HL G X

Tx C x� �� � �� �
� ��

�
min

0

1 .	 (3)

Where, X is the vector of n random variables, μ is the vec-
tor of mean values, and C is the covariance matrix. 

The concept of reliability requires the construction of 
a failure scenario, which is defined using a so-called per-
formance (or limit state) function, denoted G(X) = 0 and 
which separates the n-dimensional domain of random 
variables into two regions: a failure region represented by 
G(X) ≤ 0 and a safety region given by G(X) ≥ 0. The first 
step transforms the vector of physical random variables 
X into a reduced and independent centered normal space 
U (with zero means and unit standard deviation). This 
so-called iso-probabilistic transformation preserves the 
linearity of the limit state. The hyper-surface defined by 
G(X) = 0 can be expressed in the new space by Z(U) = 0. 
These variables are thus reduced by 

u
x

i
i x

x

i

i

�
� �
�

.	 (4)

The calculation of the reliability index, therefore, comes 
down to solving, in the normed space, the problem of opti-
mization of Eq. (3) under constraints Z(U) ≤ 0. This index 
can be interpreted geometrically by the minimum distance 
that separates the limit state from the origin in normed 
space. Thus, it is invariant in different representations of 
the same limit state. This definition was confirmed by [23] 
as the distance between the origin of the normed space and 
P*, the most likelypoint of failure located on the limit state 
surface (Fig. 1). 

A transformation to an equivalent normal distribution 
is required to apply the Hasofer-Lind method to random 
variables X with non-normal distributions. In the reduced 
space, the means and standard deviations are denoted by μN

xi
 

and σN
xi
 can be estimated by imposing two conditions [24]. 

At the design point on the failure surface, the distribution 
function and probability density of the non-normal vari-
ables should equal their equivalent normal value. The fol-
lowing relationships evaluate the standard deviation and 
mean of the equivalent normal distributions [25]:
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where φ is the probability density function of a normal 
variable, Fi is the cumulative function of non-normal dis-
tribution, fi is the non-normal probability density function, 
and ∅−1[.] is the inverse of the cumulative function of the 
distribution of normal variables.

After determining σN
xi
 and μN

xi
 for each variable, the rela-

tionship can express β more explicitly:
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where [R]−1 is the inverse of the correlation matrix.
Knowing the reliability index informs us about the level 

of security and also allows us to calculate the probability 
of failure Pf more or less precisely:

Fig. 1 FORM approximation for two random variables in standard space
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Pf �� �� �� ,	 (8)

where ∅ is the normal cumulative distribution function.
Chen and Lind  [26] proposed several optimization 

methods. One of the most well-knownsearch algorithms is 
that of [22]. These enhanced version algorithms are tech-
niques that can be used in geotechnics.

3 Modeling methods
3.1 RSM approach
The technique of RSM is used as a practical predicting 
method to establish the relationship between various pro-
cess parameters and responses. The goal is to investigate 
the relationship between these parameters and responses 
before optimizing the responses [27]. RSM aims to approx-
imate the output response using an explicit function of the 
input parameters. This estimateis expressed as follows:

g x a a x a b x x b xi i
i

n

i j i j
i

n

i i
i

n
� � � � � � � �

� � �
� � �0

1 1

2

1

.	 (9)

Where, xi represents the input variables, n is the number of 
input factors and ai, bi, aibj are coefficients to be evaluated.

ANOVA is also useful for determining the factors that 
influence the response most. Computed coefficients of 
determination R2 and adjusted R2 provide information on 
the adjusted model's accuracy.

3.2 ANN approach
The ANN technique is a computational tool inspired by 
human brain neuron performance that can establish 
a  mathematical relationship between input data and the 
output result of a defined problem  [28]. Because of its 
exceptional capability, this technique has been used to 
solve complex problems. It has been suggested that in the 
case of evaluating complicated functions, these types of 
tools be used to approximate response functions. ANN is 
more robust and accurate than non-linear fitting, resolved 
with polynomial regression models [29]. The main factors 
that a user of this method must consider to achieve mean-
ingful results are network type, architecture, and training 
parameters [28]. The network was designed by incremen-
tally increasing the number of hidden layers and nodes 
until a suitable architecture was found.

According to  [30], the hyperbolic tangent function is 
used in the neural network's hidden layers; this function 
speeds up network training compared to the sigmoid func-
tion [31]. Much of the data is set aside during the calcu-
lation for network training, while the remainderis used 

for validation. The backpropagation algorithm uses the 
descending gradient rule to train the network. This algo-
rithm is based on minimizing the mean square error 
(MSE) by sequentially introducing input-output patterns 
to update weights each time. Minimizationis accom-
plished by shifting weights from the output to the input 
layer [30]. The first step in creating an ANN model is to 
choose an architecture network. The goal is to build a pre-
dicted ANN model while minimizing model size and errors 
during learning and validation  [32]. In all of our cases, 
we used a learning rate of 0.01. To determine the optimal 
number of neurons in the hidden layer, we varied the num-
ber of iterations until we obtained a good R2 and RMSE.

3.3 ANFIS approach
ANFIS is an artificial neural network that combines the 
capabilities of fuzzy logic and neural networks to perform 
adaptive modeling and intelligent decision-making. It is 
a powerful approach widely used in engineering, finance, 
medicine, and robotics. The method employs a fuzzy 
inference system (FIS), which employs fuzzy logic princi-
ples to improve human reasoning in uncertain and impre-
cise situations. Each variable in the FIS is treated as a lin-
guistic variable expressed by various linguistic labels, and 
each label is assigned a membership function to measure 
the variable's degree of membership  [33]. The FIS com-
prises if-then rules, with the premise and consequent parts 
defined by membership functions. ANFIS differs from tra-
ditional FIS by employing a hybrid-learning algorithm to 
incorporate human knowledge or specific data patterns 
into the rule base by adjusting the membership functions. 
ANFIS is based on the Takagi-Sugeno type, which does 
not use fuzzy sets in the consequent part but instead takes 
the form of if x is A, then f = px + q, where f is a linear com-
bination of input variables with consequent parameters p 
and q. It is possible to simplify the fuzzy rule by reduc-
ing the first-order function to the constant term, where 
p equals 0  [34]. The ANFIS architecture is created by 
embedding the FIS into the adaptive network configura-
tion; it has several advantages, including increased accu-
racy, interpretability, and flexibility, making it a valuable 
tool for modeling and prediction in various applications.

3.4 Performance parameters
Five commonly used measures were employed to assess 
the effectiveness of prediction models: coefficient of deter-
mination (R2), mean square error (MSE), mean absolute 
percentage error (MAPE), root mean square error (RMSE), 
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and mean absolute deviation (MAD)  [35]. These perfor-
mance parameters were used to assess the models' per-
formance from multiple angles, including the relationship 
between actual and predicted values, associated errors, 
and relative errors compared to actual or experimental 
values. The measures are expressed in Eqs. (10)–(14).
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Where, n is the number of the experiment, yi,e, yi,p rep-
resent the experimental and the predicted values of the 
ith experiment respectively, yaverage is the average value of 
experimental data.

4 Numerical model
A reinforced earth wall was numerically modeled using the 
Plaxis 2D finite element calculation code [20]. The numer-
ical model chosen is a benchmark proposed by [7]. It rep-
resents a 6  m high wall made up of four superimposed 
panels (modeled by elements plate) and reinforced by eight 
levels of geosynthetic reinforcements (modeled by geogrid 
elements) of four meters in length (Fig. 2).

The panels (Fig. 3) are modeled by 1.5 m square plates. 
Table 1 shows their limit resistances in tension and com-
pression. The shape of these prospects a complex three-di-
mensional geometry of the wall facade. A two-dimen-
sional model with continuous reinforcements can be used 
to simplify this geometry. The calculation width is then 
reduced to two panels to simplify things further (4 rein-
forcement strips for each panel).

The reinforcement parameters are calculated by homog-
enizing the geometric properties for the width under con-
sideration. The model comprises two soils (Fig.  2), the 

characteristics of whichare shown in Table  1. The rein-
forced backfill is simulated by a uniform fine sand known 
as Hostun RF sand  [36]. The reinforced embankment 
behavior model is a linear elastic and perfectly plastic 
model with a Mohr-Coulomb-type failure criterion, and 
the mechanical parameters are obtained through calibra-
tion on triaxial tests [37]. A linear elastic behavior model 
is used for the foundation soil. The horizontal and verti-
cal displacements are blocked at the model's base for the 
boundary conditions, but only the horizontal displace-
ments are blocked on the lateral sides.

The reinforcements simulated in the reference calcu-
lation correspond to GeoStrap 50 (GS  50) geosynthetic 
reinforcements currently used in Reinforced Earth walls. 
Table  1 summarizes the properties considered in the 
model. The extensible reinforcements of type (GS  50) 
are typically implemented as a pair of 50 mm wide strips 
(250 mm) in most real walls. Their modeling in Plaxis soft-
ware [20] using structural elements of the "Geogrids" type 
allows them to consider tension, compression, and shear 

Fig. 2 The numerical model

Fig. 3 Concrete panels
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resistance. To achieve more realistic modeling, the rein-
forced backfill must be placed in 0.375 m layers through-
out all construction phases:

•	 Stage 1: Installation of the first concrete panel, the 
first and second layers, and the first reinforcement 
between the two reinforced backfill layers (equilib-
rium under self-weight).

•	 Stage 2: The third and fourth layers and the second 
reinforcement between the two layers of reinforced 
backfill (equilibrium under self-weight) are installed.

•	 Stage 3: Installation of the second concrete panel, the 
fifth and sixth layers of backfill, and the third rein-
forcement (equilibrium under self-weight).

These phases were repeated until the wall's height 
(6 meters) was reached. The calculations were performed 
in drained conditions, and the water table's presence 
was not considered. The friction angle at the interface is 
assumed to be two-thirds of the friction angle in the soil.

4.1 Experimental design
The numerical model will perform numerous determinis-
tic calculations assuming all input variables are random. 
The probabilistic technique becomes extremely time-con-
suming to compute as the number of random variables 
increases [7]. To address this issue, ANOVA analyzed the 
design of the experiment to determine which input param-
eter had the greatest influence on the wall behavior and to 
reduce computation time. 

In our study case, the maximum horizontal displacement 
Uhmax was taken into account (Fig.  4). Experiment design 
is a useful tool for reducing operation time. As a result, the 
design of experiments can be used to reduce costs during the 

design process. A full factorial design and ANOVA are typi-
cally used to assess the impact of many input factors on the 
overall behavior of the output results. Several random input 
parameter values are chosen and varied within the context of 
the factorial design. Each combination is numerically simu-
lated, and the results are saved [38]. For each random input 
parameter, n values were chosen, yielding a total of nk com-
binations for the k point to be numerically simulated.

When the number of input parameters is small, the full 
factorial design generates a reasonable number of com-
binations. However, as their number grows, simulations 
based on this design become more computationally diffi-
cult. As a result, only a subset of the total nk factorial design 
combinations must be investigated because higher-level 
interactions between the input factors are frequently irrel-
evant, and the focus is on the major effect of each parame-
ter. The nk simulations to realize can be replaced with only 
2(k−p) combinations, where 2p is the number of simulations 
deduced from the initial factorial design [38]. 

Table 1 Mechanical properties of soils, concrete and reinforcement [7]

Properties (unity) Fill Soil foundation Concrete panels Reinforcement GS 50

E (Young's modulus) (MPa) 50 50 15000 2500

ν (Poisson ratio) 0.3 0.3 0.2 -

φ (friction angle) (°) 36 - - -

Ψ (dilatation angle) (°) 6 - - -

C (cohesion) (KPa) 0 - - -

Unit weight (kN/m3) 15.6 20 25 -

Width (m) - - - 0.1

Thickness (mm) - - - 3

Strip tensile yield-force limit (kN) - - - 100

Maximum compressive strength (kPa) - - - 0

Tensile failure strain limit of the strip (%) - - - 12

Fig. 4 Horizontal displacements (m) in the reinforced earth wall with 
Plaxis 2D
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This research aims to identify the most important ran-
dom variables that influence the behavior of the wall. Only 
half of the experimental design was used with p = 1. As a 
result, the full factorial design (nk) will be replaced by a 
fractional design with n(k−1) configurations, where k rep-
resents the number of random variables, and n is the level 
number of each parameter.

4.2 Fractional design (Central Composite Design)
The central composite design is a well-known technique 
for optimizing with a quadratic regression model (CCD). 
Each variable in this methodcan have five levels, with two 
of those levels representing the same extreme two facto-
rial points as in the full factorial design. While each fac-
tor's mean value represents its third level, the last two lev-
els are considered axial points and are represented by an 
axial distance called often (alpha), which is added to or 
subtracted from the mean value of each variable. 

The CCD technique provides efficient designs for prob-
lems with fewer than four parameters, and the number 
of consecutive runs iscomparable.In the current study, 
a design of experiments (CCD) with three levels and five 
factors was used to assess the effect of random input vari-
ables on wall behavior. In our case, the output results are 
the maximum horizontal displacement Uhmax of the wall, 
while the five random factors are: Young's modulus (E), 
Poisson coefficient (ν), the friction angle (φ), unit weight 
(γ) and the dilatancy angle (Ψ). Their levels are listed 
in Table 2.

A total of 27  experiments were carried out using the 
validated numerical model, according to a central com-
posite design with 5 factors and 3 levels. The total realiza-
tion was calculated using the formula 2n−1 + 2n + m, where 
n is the number of random variables, and m is the number 
of replicated points. As a result, we obtained 16 factorial 
points, 10  axial points, and one replicated center point, 
with α = 1. The obtained results of the random numerical 
models are listed in the last column of Table 3, followed 

by ANOVA to evaluate the influence of each random vari-
able on the response. Only parameters with a contribution 
greater than 5% were kept for the remainder of the study.

4.3 ANOVA results
The Analysis of Variance (ANOVA) is a statistical method 
for interpreting the results. It categorizes the various input 
parameters based on their impact on the output param-
eters. Table  3 shows the ANOVA results with a signifi-
cance level of α = 0.05 (i.e., for a 95% reliability level). 
A low probability value (≤0.05) indicates that the mod-
els obtained are statistically significant. Table  4 shows 
that the friction angle has the greatest influence on the 
response, with a contribution of 40.821%, followed by 
the unit weight gamma, with a contribution of 12.877%, 
and Young's modulus E, with a contribution of 6.564%. 
While the terms Ψ and ν had the least influence, contrib-
uting 1.899 and 1.584%, respectively. Except for the terms 
(ν × Ψ) and (φ × Ψ), which indicate a contribution greater 
than 5.0%, the rest of the interaction terms were found to 
be negligible. Based on the ANOVA results, we used fric-
tion angle, unit weight, and Young's modulus as random 
variables in the remainder of the study.

4.4 Methodology
Three random variables were considered based on ANOVA. 
They are characterized by their mean values μi and their 
coefficients of variation Covi. We evaluated the perfor-
mance function g(x) at the mean value point and the 2n 
points, each at ±k where k = 1.65 (Table 5). Single repli-
cate 3n factorial design was used to fit a quadratic regres-
sion model, where n is the total number of input variables. 
Throughout the rest of the study, a full factorials design of 
experiments (L27) was used, corresponding to 27 sample 
points for three input variables (E, φ and γ), where the out-
put response, which depends on the random variables, is 
the performance function (G). The investigation aimed to 
assess the impact of controllable factors on output response.

In a more general framework, the literature provides an 
overview of the dispersion and the choice of the type of dis-
tribution of the probability density of these parameters for 
the selection of the variation range of the design parame-
ters of our problem. According to Wolff [39], the probabil-
ity density of the internal friction angle (φ) in sands is nor-
mally distributed. Griffiths et  al.  [40] used a Lognormal 
distribution for the unit weight (γ) and the internal friction 
angle (φ) with the coefficients of the following variations 

Table 2 Levels of soil parameters used in the numerical models

Input parameters Minimal 
value of μ

Mean 
value of μ

Maximal 
value of μ

Unit weight (kN/m3) 13.0 17.5 22.0

E (Young's modulus) (MPa) 30.0 60.0 90.0

ν (Poisson ratio) 0.2 0.3 0.4

φ (friction angle) (°) 25.0 32.5 40.0

Ψ (dilatation angle) (°) 0.0 7.0 14.0
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to demonstrate the strong effect of failure mechanisms in 
spatially random materials: Covγ = 50% Covφ = 17.32%. 
Sivakumar Babu and Srivastava [41] confirmed the inter-
est in the application of the surface method (RSM) in a 
probabilistic analysis by adopting in their cases a normal 
distribution for the parameters (φ, γ and E) and a coef-
ficient of variation, respectively, as follows: Covφ  =  6%, 
Covγ = 6% and CovE = 12%.

Youssef Abdel Massih and Soubra  [42] demonstrated 
that for a serviceability limit state, precisely evaluating 
the uncertainties of Young's modulus (E) was critical in 
obtaining reliable probabilistic results. The lognormal 
distribution was used, with a coefficient of variation of  
CovE  =  15%. Based on these findings and those of  [23], 
we calculated the design parameters by selecting differ-
ent cases of combinations of the Normal and Lognormal 

distributions, with the corresponding coefficients of varia-
tion shown in Table 5. Uncorrelated variables were used in 
all of these cases to simplify things.

5 Results and discussion
Table 6 lists the results for the case of a maximum hor-
izontal displacement Uhmax  =  10.0  cm, with the random 
variables represented by E, φ and γ. The performance 
function (G10) illustrates the calculated and the estimated 
output resultsby RSM, ANN and ANFIS models, according 
to the L27 full factorial design.

5.1 RSM modeling
RSM is a combination of statistical and mathematical tech-
niques that can be used to model and analyze a problem. 
It determines the best approximation for the true functional 

Table 3 Levels of soil parameters used in the numerical models

Run Young's modulus  
E (MPa)

Poisson coefficient  
ν

Unit weight  
γ (kg/m3)

Friction angle  
φ (°)

Dilatancy angle  
Ψ (°)

Horizontal displacement  
Uhmax (cm)

1 60 0.3 13 32.5 7 3.6

2 30 0.2 22 25 0 9.26

3 90 0.2 22 40 0 1.19

4 90 0.2 13 40 14 3.42

5 30 0.3 17.5 32.5 7 5.42

6 30 0.4 22 40 0 5.39

7 60 0.3 17.5 32.5 14 3.87

8 90 0.4 22 40 14 2.71

9 90 0.4 13 25 14 4.76

10 90 0.2 13 25 0 1.43

11 30 0.4 22 25 14 5.96

12 30 0.2 13 25 14 5.91

13 30 0.2 22 40 14 5.21

14 30 0.4 13 25 0 8.09

15 60 0.2 17.5 32.5 7 4.66

16 60 0.3 22 32.5 7 5.65

17 90 0.2 22 25 14 5.98

18 60 0.4 17.5 32.5 7 4.56

19 60 0.3 17.5 25 7 8.21

20 60 0.3 17.5 32.5 7 4.62

21 60 0.3 17.5 32.5 0 5.63

22 30 0.4 13 40 14 2.63

23 90 0.3 17.5 32.5 7 4.18

24 60 0.3 17.5 40 7 1.97

25 90 0.4 13 40 0 0.76

26 90 0.4 22 25 0 12.78

27 30 0.2 13 40 0 3.58
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relationship between the response and the set of independent 
variables [43], and polynomial functions commonly approx-
imate it in cases where models are obtained by conducting 
a small number of experiments using the design of experi-
ments. A quadratic regression model modeled the relation-
ship between the inputs (Young's modulus E, friction angle φ 
and unit weight γ) and the output (performance function G10) 
and presented by Eq. (15) with a coefficient of determination 
R2 of 96.88% using Design Expert V10 Software [44].

G E
E E

10
63 017 0 083 3 141 0 577

0 00379 0 0015

� � � � � � �
� � � � � � �

. . . .

. .

� �
� � 00 029

0 000139 0 0325 0 0552
2 2 2

.

. . .

� �

� � � � � �

� �

� �E
	 (15)

This regression model approximates the response G10 

based on the input design parameters (E, φ and γ).

5.1.1 Graphical validation of the model
Fig. 5 displays the normal probability diagram of the resid-
ual for the treated response. We examined the accuracy 

of the approximated model listed above for the best out-
put response accuracy. It is worth noting that the condi-
tion of the residual normality plot is satisfied because their 
approximation is in the form of a straight line.

5.2 ANN modeling
Fig.  6 illustrates the adequate ANN architecture of the 
performance function G10 model (3-3-1) with three input 
nodes (E, φ and γ), three nodes in the hidden layer and 
one node for the output layer (the response G10). This final 
architecture was obtained after an optimal number of 
50 iterations.

The mathematical model for the ANN architecture is 
presented by Eq. (16). This model results from the product 
of hidden layers of the height neurons to a linear function.

G H H H
10 1 2 3
1 3785 0 9137 2 1845 5 7332� � � � � � �. . . .  (16)

Where, H1 to H3 are the outputs of each neuron of the hid-
den layer and are expressed as below:

Table 4 ANOVA results

Source Sum of squares df Mean square F value p-value  
Prob > F Cont.%

Model 171.70 15 11.45 28.15 <0.0001 Significant

A - Young's modulus 11.27 1 11.27 27.71 0.0003 6.564 Significant

B - Poisson's coefficient 2.72 1 2.72 6.70 0.0252 1.584 Significant

C - Unit weight 22.11 1 22.11 54.39 <0.0001 12.877 Significant

D - Friction angle 70.09 1 70.09 172.40 <0.0001 40.821 Significant

E - Dilatancy angle 3.26 1 3.26 8.02 0.0163 1.899 Significant

A × B 7.40 1 7.40 18.20 0.0013 4.310 Significant

A × C 2.79 1 2.79 6.86 0.0239 1.625 Significant

A × D 1.24 1 1.24 3.06 0.1082 0.722 Significant

A × E 3.35 1 3.35 8.24 0.0152 1.951 Significant

B × C 0.68 1 0.68 1.67 0.2222 0.396 Significant

B × D 7.45 1 7.45 18.33 0.0013 4.339 Significant

B × E 16.04 1 16.04 39.45 <0.0001 9.342 Significant

C × D 5.86 1 5.86 14.40 0.0030 3.413 Significant

C × E 8.44 1 8.44 20.76 0.0008 4.916 Significant

D × E 9.00 1 9.00 22.14 0.0006 5.242 Significant

Residual 4.47 11 0.41

Cor total 176.17 26

Table 5 Variation values of the random variables

Input parameters Mean (µ) Standard deviation (σ) Cov (%) μ − 1.65σ μ + 1.65σ Distribution

Friction angle φ (°) 36.0 3.6 10 30.06 41.94 Normal/Lognormal

Unit weight γ (kN/m3) 15.60 1.248 8 13.54 17.66 Normal

Young's modulus E (kN/m2) 50 7.5 15 37.63 62.38 Normal/Lognormal
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Table 6 Results for the case of the performance function (G10)

Run
Factor 1 Factor 2 Factor 3 Response G10 (cm)

A: Young's modulus E (kPa) B: Friction angle φ (°) C: Unit weight γ (kN/m3) Calculated RSM ANN ANFIS

1 37.63 36 17.66 5.13 5.24 5.11 5.13

2 50 41.94 15.6 5.49 5.39 5.48 5.52

3 37.63 41.94 15.6 7.52 7.17 7.41 7.52

4 50 30.06 17.66 4.75 4.55 4.75 4.75

5 62.38 36 17.66 4.61 4.75 4.66 4.74

6 50 30.06 13.54 5.09 4.98 5.10 5.09

7 62.38 41.94 17.66 4.05 4.23 4.17 4.49

8 37.63 30.06 13.54 6.00 6.14 6.02 6.00

9 37.63 36 13.54 4.56 4.81 4.60 4.56

10 50 36 15.6 5.11 5.21 5.12 5.12

11 37.63 30.06 17.66 7.32 7.12 7.39 7.32

12 50 36 17.66 7.44 7.56 7.45 7.45

13 62.38 41.94 15.6 4.89 5.03 4.88 5.16

14 50 30.06 15.6 7.38 7.64 7.45 7.38

15 62.38 36 15.6 4.46 4.41 4.46 4.53

16 62.38 36 13.54 5.67 6.01 5.66 5.70

17 37.63 30.06 15.6 5.11 4.93 5.18 5.11

18 62.38 30.06 15.6 5.13 5.05 5.13 5

19 62.38 30.06 17.66 5.51 5.70 5.49 5.54

20 62.38 30.06 13.54 6.35 6.25 6.34 6.46

21 37.63 41.94 13.54 5.35 5.19 5.35 5.17

22 37.63 41.94 17.66 7.43 7.62 7.45 7.51

23 62.38 41.94 13.54 5.5 5.40 5.49 5.54

24 50 41.94 17.66 4.64 4.52 4.64 4.62

25 37.63 36 15.6 4.61 4.51 4.67 4.66

26 50 41.94 13.54 5.49 5.54 5.50 5.48

27 50 36 13.54 7.43 7.02 7.37 7.32

Fig. 6 ANN architecture (3-3-1) for the performance function G10

Fig. 5 Normal probability of residuals for the performance function G10
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Fig. 7 illustrates the predicted and calculated results for 
training and validation cases.

Fig.  7 shows that the intersection between calculated 
and predicted values of the response G10 is close to the 
median line. Moreover, the value of the coefficient of 
determination R2 is 0.9989 for the training case and 0.9969 
for the validation case, and the value of RMES is 0.0327 
and 0.0641 for both cases, respectively. This finding high-
lights the robustness of the fitted mathematical model.

5.3 ANFIS modeling
In this study, an ANFIS model was proposed to predict 
the performance function G10 based on three input vari-
ables: E, φ and γ. The model used a first-order fuzzy infer-
ence system of the Sugeno method and had a five-layer 
architecture consisting of fuzzification, product, rule 
or normalization, defuzzification, and overall summa-
tion, and the Gaussian membership function was chosen. 
The  architecture of the proposed model is illustrated in 

Fig. 8. Descriptions of these layers have been previously 
reported in previous works [45]. The data was divided into 
a training set (70%) and a validation set (30%) to test the 
generalization capacity of the model. The modeling and 
analysis were conducted using the fuzzy logic toolbox of 
MATLAB - MathWork Inc. (version R2015b) [46].

The last column of Table 6 presents the results of the 
ANFIS model's prediction of the performance function 
G10. To evaluate the model's fitness, R2 values were deter-
mined, resulting in values of 0.990 for training and 0.992 
for the testing, respectively. An R2 value of 0.990 indicates 
that the model can explain 99% of the variation between 
the actual and estimated values. Additionally, Fig. 9 dis-
plays the correspondence plot of the estimated G10 versus 
the actual G10, indicating reasonable agreement between 
the estimated and actual performance function.

5.4 Comparison of RSM, ANN and ANFIS models
The RSM, ANN and ANFIS methods were compared to 
determine the predictive model's accuracy. Some com-
parisons were required in this step to demonstrate the 
difference between calculated results and predicted val-
ues obtained by RSM, ANN and ANFIS models (Fig. 10). 
The highest coefficient of determination is R2, and low val-
ues of the mean square error (MSE), mean absolute per-
centage error (MAPE), root mean square error (RMSE), 
and mean absolute deviation (MAD). Fig.  10 shows the 
differences between calculated and predicted responses 
using RSM, ANN and ANFIS models. It is worth noting 
that the measured and ANN-predicted values are very 
close compared to the RSM and ANFIS predicted values. 
The RSM and ANFIS models yielded a coefficient R2 of 
0.968 and 0.990, respectively. The corresponding value 

Fig. 8 ANFIS architecture for the performance function G10Fig. 7 ANN predicted versus calculated values for G10
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from the ANN model is 0.998 (Table 7). It can be noted that 
the MSE, MAPE, MAD and RMSE estimated values from 
the ANN-fitted model are more accurate than those from 
the RSM and ANFIS models (Table 7). As a result, ANN 
models were used for the optimization process.

6 Optimization using a MOGA
The multi-objective optimization aimsto find a com-
promise between several criteria and compute the input 

parameter values that can be brought to the optimal val-
ues of the response outputs while considering some cri-
teria [47]. There are numerous optimization methods for 
solving both constrained and unconstrained problems. 
The most widely used optimization methods are genetic 
algorithms (GAs). Creating an arbitrarily initial population 
called chromosomes can be considered an initial solution 
whose main performance is evaluating the fitness func-
tion. The resultsare then used to generate potential solu-
tions using evolutionary techniques such as selection, 
crossing, and mutation. The resolution system may repeat 
this procedure until the best solution is obtained [48].

A combination of the minimization of the Hasofer-
Lind reliability index βHL and the cancellation of the per-
formance function was carried out. The MOGA tool was 
employed based on the mathematical model formulated 
using the ANN method. The constraints used in the pres-
ent optimization are:

Minimise with�HL
TX C X G x� �� � �� � � � ��1

10
0

* .	 (18)

The limitations of the input factors for the performance 
functions models are given by Eq. (19):

E E E
min max

min max

min max

� �
� �
� �
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�
�

� � �
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.	 (19)

Matlab software [46] was used to create a program file 
containing the fitness functions. The fitness functions, in this 
case,are the Hasofer-Lind reliability index βHL and the per-
formance function G. The population, crossover distribution 
index, mutation distribution index, crossover probability, 
and mutation probability of the MOGA were all set using the 
GA toolbox in Matlab software [46]. Table 8 summarizes the 
βHL results and the corresponding design points (E*, φ* and 
γ*), for various horizontal displacement values Uhmax.

Table  8 outlines the reliability index results and the 
corresponding design points of the mechanical parame-
ters (Density, internal friction angle, and modulus of elas-
ticity) for various limit values of horizontal displacement 
(5 to 20 cm) and cases of distribution combinations. It can 
be noted that the reliability index directly depends on the 
limit displacements in these various cases. Increasing 

Table 7 Comparison between RSM, ANN and ANFIS models

Index R2 MSE MAPE MAD RMSE

RSM 0.968 0.0362 2.94 0.167 0.189

ANN 0.998 0.002 0.56 0.031 0.046

ANFIS 0.990 0.013 1.23 0.061 0.115

Fig. 9 ANFIS predicted versus calculated values for G10

Fig. 10 Comparison between predicted and experimental values for G10 
with RSM, ANN and ANFIS models
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the limit displacement leads to a constantly higher index. 
Similarly, a slight increase was observed when all vari-
ables had a normal distribution. The value of βHL increases 
by 2.5% for the same limit displacement; this small dif-
ference can take on larger values if we consider non-nor-
mal distributions for all variables. This result is due to the 
fact that normal and non-normal distributions differ in 
the areas of different design points  [7]. Therefore, using 
normal distributions prioritizes safety over other proba-
bilistic models that may result in an uneconomic design. 
Furthermore, the partial safety factors are obtained by 
dividing the characteristic values by the calculation val-
ues "design point" (γ*, φ* and E*) are expressed as follows:

F y

y
� �
�

*

	 (20)

F�
��
�

�
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*

	 (21)
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EE
E�
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*

.	 (22)

Where, μy, μφ and μE represent the mean value of the unit 
weight, the internal friction angle and the modulus of elas-
ticity, respectively.

These factors are also directly dependent on the limit 
displacement in all cases, which can converge to the value 
1 for the limit case of the horizontal displacement equal to 
(7.1 cm). Compared to the other parameters (φ and E), the 
partial safety factors for the unit weight (γ) present a fine 

sensitivity to the limit displacement. They always take 
values close to 1 in most cases. As a result, this variable 
has always been considered a deterministic parameter. 
Nottrodt [49] reached similar findings. On the other hand, 
for the low limit displacement (5  cm), the partial safety 
factors of φ and E are less than one, which is explained by 
the inverse effects of the parameters on the behavior of the 
model. The decrease in φ and E leads to an increase in γ. 
This result is in good agreement with the study of [7].

7 Conclusions
A probabilistic analysis is performed on a mechanically 
reinforced earth wall in granular soil. A numerical simu-
lation was used as a deterministic model to evaluate the 
horizontal displacement of the wall face. The serviceabil-
ity limit state is thought to accurately describe the wall's 
actual behavior. Following an ANOVA statistical analy-
sis demonstrating the degree of influence of the vari-
ous parameters on the displacement of the wall, only the 
parameters (γ, φ and E) are considered uncorrelated ran-
dom variables. By  comparing the three methods (RSM, 
ANN and ANFIS), the functional relationship between the 
input and output variables, representing the limit state, 
is obtained (ANN). In this case, the Hasofer-Lind index 
is used to evaluate the reliability index of the reinforced 
earth wall, which is accomplished through multi-objec-
tive optimization using a GA. This comparison allowed 
us to deduce the effects of design parameter uncertainties 
on the reliability index.

Table 8 Reliability indices, design points and partial safety factors with the ANN models

Uhmax  
(cm)

βHL Pf 
(%)

γ* 
(kN/m3)

φ* 
(°)

E* 
(kPa)

Fγ Fφ FE 

Case with Normal, Normal and Lognormal, respectively, for γ, φ and E

5 0.881 18.920 15.798 39.120 49.581 1.013 0.893 1.008

10 1.470 7.080 16.042 31.430 44.588 1.028 1.189 1.121

15 3.386 0.035 16.526 24.543 42.815 1.059 1.591 1.168

20 5.512 0.177e-5 17.450 17.564 39.005 1.119 2.295 1.282

Case with Normal, Lognormal and Normal, respectively, for γ, φ and E

5 0.791 21.450 15.766 38.349 47.499 1.011 0.918 1.053

10 1.462 7.190 16.081 31.358 45.008 1.031 1.192 1.111

15 3.366 0.038 16.562 24.517 43.188 1.062 1.593 1.158

20 5.581 0.119e-5 17.494 17.269 39.003 1.121 2.337 1.282

Case with Normal variables for γ, φ and E

5 0.880 18.940 15.828 39.099 50.052 1.015 0.894 0.999

10 1.501 6.670 16.074 31.372 44.928 1.030 1.192 1.113

15 3.405 0.033 16.559 24.519 43.162 1.062 1.593 1.158

20 5.632 0.89e-6 17.493 17.198 39.003 1.121 2.347 1.282
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By calculating each parameter's percentage contri-
bution, the statistical analysis ANOVA-type can identify 
the most influential parameters on the wall's behavior. 
It should be noted that any parameter with a contribution 
of more than 5% is considered a probabilistic variable. 
The usefulness of this method was justified by consider-
ing the low contribution of density, which results in a fine 
dependence on the limit displacement, resulting in partial 
safety factors close to 1 in most cases. Furthermore, its 
advantage over other research works is useful in devel-
oping good judgment and improving decision-making. 
Based on the data set,an objective comparison of the tree 
methods (RSM, ANN and ANFIS). Reveals that the predic-
tive models developed by the (ANN) method are by far the 
most accurate and that the latter was very relevant for the 
objective, in contrast to that carried out using the statisti-
cal program (RSM) based on different types of mathemati-
cal methods, such as the complete quadratic, the pure qua-
dratic, the interactions, and the linear regression.

In comparison to the size of the search space, the GA 
technique finds the global optimum in a relatively small 
number of evaluations. The GA is much less likely than 

point-to-point motion optimization techniques to converge 
to a local optimum. In contrast to traditional methods, 
which rely on the existence and continuity of derivatives, 
they use only objective information about the function or 
physical condition. The results confirmed previous para-
metric studies, indicating that the partial safety factors for 
unit weight always take values close to one in most cases. 
This is why this parameter has been referred to as a deter-
ministic variable in previous works.

Furthermore, the partial safety factors of the param-
eters (φ and E) exhibit a remarkable dependence on the 
limit displacement (Uhmax), which explains their observed 
influences on the displacement of the wall, particularly 
that of the internal friction angle, which contributes sig-
nificantly in this case. For small limit displacements less 
than 7.1 cm, the reliability index converges towards val-
ues less than one, indicating high failure probabilities and 
the vulnerability of the structure in question. Following 
the results of the various distribution combinations used, 
considering a normal distribution for all random variables 
appears sufficient, putting the situation on the safe side 
and leading to an uneconomical design.
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