Study of Ceramic Membrane from Naturally Occurring-Kaolin Clays for Microfiltration Applications
Abstract
The focus of this work is to assess the quality of porous membranes prepared from naturally occurring kaolin clays and to evaluate the performance of tubular ceramic membranes treating integrated raw effluents from seafood industry. This material has been chosen due to its natural abundance, its non-toxicity, low cost and its valuable properties. The preparation and characterization of porous tubular ceramic membranes, using kaolin powder with and without corn starch as poreforming agent, were reported. SEM photographs indicated that the membrane surface was homogeneous. The effects of material compositions, additives and the relatively lower sintering temperature, ranging from 1100° to 1250°C, on porosity, average pore size, pore-size distribution and mechanical strength of membranes have been investigated. A correlation between microstructure and mechanical properties of membranes has been discussed. The performance of the novel ceramic membranes thus obtained was determined by evaluating both the water permeability and rejection. The obtained membrane was used to treat cuttlefish effluents generated from the conditioning seawater product industry which consumes a great amount of water. Cross-flow microfiltration was performed then, in order to reduce the turbidity and chemical oxygen demand (COD).