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Abstract

The depletion of fossil fuel reserves and the growing environmental concerns associated with their use have intensified interest
in renewable biofuels. Corncob waste, a lignocellulosic biomass composed of approximately 41% cellulose, 36% hemicellulose,
and 6% lignin, represents a promising feedstock for pyrolysis oil production. However, conventional pyrolysis processes typically
produce pyrolysis oil with low conversion, low density, and poor stability. This study investigated catalytic pyrolysis in a fixed-bed
reactor employing Zeolite-A synthesized from rice husk-derived silica to improve pyrolysis oil quality. Catalytic pyrolysis experiments
were conducted at various temperatures (300 °C, 350 °C, and 400 °C) and catalyst-to-biomass ratios (1:0 to 1:20 w/w). The highest
pyrolysis oil yield of 34% was achieved at 400 °C without a catalyst (1:0 w/w), indicating that while catalyst presence is not essential for
maximizing yield, it plays a crucial role in modifying the physicochemical properties of the oil and accelerating the overall reaction.
Oil density ranged from 1.24 to 1.35 g/mL, peaking at 400 °C and 1:15 w/w, reflecting enhanced cracking and polymerization.
Viscosity varied from 85.28 to 116.00 mm?/s, increasing with catalyst ratio and influenced by the temperature-dependent cracking
and secondary reactions. GC-MS analysis identified hydrocarbons including androstane and spirocyclic compounds, confirming the
improvement in fuel quality through catalytic deoxygenation. These findings highlight the potential of Zeolite-A-catalyzed pyrolysis
for producing high-quality liquid biofuels.
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1 Introduction

Fossil fuels have long supported the growing global
energy demand, especially in transportation and indus-
trial applications. However, the continuous increase
in consumption has become a significant concern for
long term sustainability [1]. The International Energy
Outlook 2018 projects that global energy demand will rise
by nearly 28% by 2040, reaching approximately 739 qua-
drillion British thermal units (Btus) or 7.79 x 102 J [2].
This trend highlights the urgent need to identify alterna-
tive energy sources that can ensure the sustainability of
both resources and the environment. In recent years, the
development of renewable energy options such as solar,
wind, geothermal, and bioenergy has attracted increasing

global attention [3]. Bioenergy has excellent potential to
generate energy, fuels, and valuable chemical products.
Biomass can be classified into lignocellulose and
non-lignocellulose types. Lignocellulose refers to mate-
rials with high lignin content, such as wood, rice husks,
bagasse, and wheat straw. In contrast, non-lignocellulose
includes sources like inedible oils, algal biomass, and
other materials with very low or negligible lignin con-
tent. Lignocellulosic biomass is mainly composed of cel-
lulose, hemicellulose, lignin, and a small amount of ash.
For instance, corncobs, a widely available lignocellulosic
biomass, contain 45.88% cellulose, 39.40% hemicellu-
lose, and 11.32% lignin [4]. They make up approximately
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40 to 50% of the total mass of the whole corn. Based on data
from the Indonesian Central Statistics Agency, the produc-
tion of dry corn kernels with a moisture content of 14%
in 2020 was 12.03 million ton, in 2021 it was 13.41 mil-
lion ton, in 2022 it was 16.53 million ton, in 2023 it reached
14.77 million ton and in 2024 it increased to 15.14 mil-
lion ton and the projection in 2025 which experienced an
increase of 1.41 million ton to 16.52 million ton [5]. This
large, growing corn production volume indicates a sub-
stantial supply of corn cobs that can support bioenergy
development. To convert biomass into useful energy carri-
ers, thermochemical processes such as combustion, pyrol-
ysis, gasification, and catalytic upgrading are commonly
used to break down the complex molecular structures [6].

Pyrolysis is a thermal decomposition process carried
out in the absence of oxygen that yields high-energy prod-
ucts. The main outputs of pyrolysis include gaseous prod-
ucts known as synthesis gas, a liquid fraction referred to
as biooil, and solid carbon residue known as biochar [7].
Pyrolysis proses are divided into three types, such as fast,
flash, and slow pyrolysis. Fast pyrolysis operates at heat-
ing rates and high temperature of 200 °C/s and >500 °C,
respectively [8]. Flash pyrolysis uses a very rapid heating
rate between 1000 and 10000 °C/s [9]. In addition, slow
pyrolysis at temperature of 200 °C can achieved biooil
production of 48% from corncob waste [10]. Pyrolysis can
be carried out in various reactor configurations, among
which fixed-bed, fluidized-bed, and microwave-induced
reactors are the most widely utilized [11, 12]. Typically
constructed from steel, the fixed-bed reactor includes a
cavity for holding stationary biomass, an electric heating
source, and a steam cooling unit. It offers several advan-
tages, including high conversion efficiency, low tar for-
mation, and compatibility with biomass containing vary-
ing ash contents. Nevertheless, this design demands thin
feedstock to avoid uneven heating and faces difficulties
with scale-up and long heating times [13, 14]. Catalytic
pyrolysis is used to improve the quality and characteristics
of biooil. This can be achieved through catalytic crack-
ing, hydrocracking, or hydrotreatment. Catalytic pyrol-
ysis typically occurs at temperatures between 400 °C
and 500 °C and under pressures at 1.013 x 10° Pa [15].
Reactions involved include dehydration, cracking, polym-
erization, deoxygenation, and aromatization. Catalysts
used in pyrolysis are classified as primary or secondary.
Primary catalysts are mixed with the feedstock before the
pyrolysis reaction, either through dry or wet preparation.
In contrast, secondary catalysts are placed in a separate
zone and do not directly interact with the biomass.

Zeolites are crystalline porous aluminosilicate miner-
als with a three-dimensional framework composed of sili-
con and aluminum tetrahedra [15]. The framework contains
open channels and cavities that accommodate exchange-
able cations to balance the negative charge of the lattice.
Zeolites release water upon heating and are available in nat-
ural and synthetic forms. Natural zeolites are derived from
volcanic activity and sedimentation, while synthetic zeo-
lites are made from materials such as soda ash and feld-
spar. Common types of zeolites include types A, X, Y, and
P. Zeolite-A is rich in aluminum, highly porous, and has
a low silicon to aluminum ratio between 1 and 1.5 [16].
Zeolite catalysts enhanced pyrolysis oil quality through
deoxygenation, aromatization, cracking, and shape-selec-
tive effects [17]. During deoxygenation, zeolites remove
oxygen from pyrolysis oil compounds via dehydration,
decarboxylation, and decarbonylation, which lowers acidity
and increases the calorific value. In aromatization, zeolites
convert oxygenated intermediates into valuable aromatic
hydrocarbons, improving energy density and overall fuel
quality [18]. Through cracking, zeolites break down larger
molecules into smaller ones, reducing viscosity and enhanc-
ing the flow properties of pyrolysis oil. Zeolite-based cata-
lysts are widely used for polymer cracking and dehydration
due to their high selectivity for hydrocarbon production and
their ability to reduce unwanted byproducts such as carbox-
ylic acids and oxygenated compounds. Catalyst application
in pyrolysis significantly improves the hydrocarbon con-
tent of the biooil. A recent study Kumar et al. [19] showed
that the choice of catalyst can influence the yields of gas,
char, and pyrolysis oil. Without a catalyst, the process pro-
duced 6.31, 22.0, and 71.6 wt% of gas, char, and pyrolysis
oil, respectively. In comparison, using the CuNiZ-1 catalyst
resulted in yields of 8.98, 21.0, and 70.0 wt%, respectively.
In addition, corncob liquid smoke produced via catalytic
pyrolysis at 350 °C for 2 h with 6% (w/w) zeolite exhibited
optimal properties, including a yield of 6.5%, pH 2, density
1.132 g/mL, acid content 24%, and viscosity 1.309 cP, suit-
able for food preservation applications [20]. Furthermore,
catalytic treatment reduces the presence of undesirable com-
pounds such as water and organic acids while enhancing the
content of aromatic hydrocarbons [21]. Despite increasing
interest in utilizing zeolite catalysts for biomass pyrolysis,
including corncob and other lignocellulosic residues, previ-
ous studies have inadequately and superficially addressed
the research gap related to catalytic slow pyrolysis of corn-
cob using rice husk-derived zeolite catalysts. Many exist-
ing works on catalytic pyrolysis focus on fast pyrolysis or
different catalyst systems (e.g., HZSM-5, activated carbon,



metal-impregnated catalysts), but do not critically analyze
the fundamental mechanisms, catalyst effectiveness, opti-
mal catalyst-to-biomass ratios, or the interactions between
process temperature and catalyst properties in slow pyrolysis
conditions. For example, investigations into catalytic pyrol-
ysis of corncob with zeolite mixtures have shown improved
aromatic yields but lack detailed discussion of catalyst struc-
tural influence and process parameter optimization in slow
pyrolysis systems [22]. Likewise, while zeolite catalysts have
been employed in biomass pyrolysis broadly, comprehensive
explanation of why rice husk-derived Zeolite-A specifically
improves corncob oil characteristics under slow pyrolysis
remains limited and poorly articulated in the literature.

This study aims to investigate the potential of corncob
biomass as a raw materiaZ to produce high-quality biooil
through catalytic pyrolysis using a fixed bed reactor from
conventional pyrolysis. Specifically, the research focuses
on enhancing the properties of the resulting biooil by utiliz-
ing Zeolite-A as a catalyst synthesized from rice husk-de-
rived silica. The catalytic pyrolysis process is carried out
under varying temperature (i.e. 300 °C, 350 °C and 400 °C)
and catalyst-to-biomass ratio (i.e. 1:0, 1:5, 1:10, 1:15, and
1:20 w/w) conditions to evaluate their effects on pyrolysis
oil yield, physicochemical properties (e.g. density and vis-
cosity), and calorific value. The catalyst used in this pyrol-
ysis is classified as a primary catalyst, where the catalyst
is mixed with the raw material before the pyrolysis reac-
tion, either through dry preparation. The novelty of this
study lies in exploring the catalytic effects at temperatures
below 400 °C, a range that remains less studied, to better
understand the combined impact of reaction temperature
and catalyst loading on pyrolysis oil yield, composition,
and fuel properties. The performance of the produced lig-
uid fuel is assessed through combustion capability tests to
determine its suitability as an alternative energy source.
The overall objective is to improve the efficiency and
quality of bio-energy technologies from corncob waste,
thereby contributing to the advancement of sustainable
bioenergy technologies. Despite numerous studies on
pyrolysis of lignocellulosic biomass, few have systemati-
cally investigated the catalytic effects of rice husk-derived
Zeolite-A on corncob pyrolysis oil at temperatures below
400 °C. This study addresses this research gap by evalu-
ating the combined influence of catalyst-to-biomass ratio
and sub-400 °C pyrolysis conditions on oil yield, composi-
tion, and fuel properties, providing insights for optimized
catalytic pyrolysis strategies.
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2 Materials and methods

2.1 Materials

The primary raw materials utilized in this study consisted of
corncobs and rice husks. The corncobs were obtained from
local corn farmers in Bangil District, Pasuruan Regency,
East Java, while the rice husks were obtained from farmer
cooperatives in Kepohbaru District, Bojonegoro Regency,
East Java. The chemical reagents employed through-
out the experiment procedures, include sodium hydrox-
ide (Merck), nitric acid (Merck), silica gel (Sigma-Aldrich),
aluminum powder (Merck), and distilled water. All chemi-
cals were used at the highest commercially available purity
to ensure consistency and reproducibility of the results.

2.2 Rice husk silica extraction

Rice husk silica was prepared using the alkali extraction
method [23]. A total of 50 g of dry husk was mixed with
500 mL of 1.5% NaOH solution. The mixture was boiled
for 30 min, to extract the silica content. The resulting mix-
ture was then cooled to room temperature and left to stand
for 24 h. Subsequently, the mixture was filtered to obtain
the filtrate containing soluble silica (silica sol). To precipi-
tate solid silica, the sol was acidified by the gradual addi-
tion of 10% HNO, solution until gel formation was observed.
The resulting gel was aged for three days, thoroughly
washed with deionized water to remove residual acid, oven-
dried at 110 °C for 8 h, and finally ground into a fine powder.

2.3 Zeolite-A synthesis

Zeolite-A was synthesized from an aluminosilicate gel.
Initially, 0.723 g NaOH was dissolved in 80 mL deion-
ized water, and the resulting solution was divided into two
equal portions. A silicate solution was prepared by adding
15.480 g of silica to one portion, while an aluminate solu-
tion was obtained by adding 8.258 g of aluminum pow-
der to the second portion of the NaOH solution. The two
solutions were then combined and stirred thoroughly until
a homogeneous aluminosilicate gel formed. The gel was
aged at 60 °C for 3 h, followed by transfer into a sealed
Teflon-lined autoclave for hydrothermal crystallization
at 100 °C for 20 h. After crystallization, the solid product
was filtered, repeatedly washed with deionized water until
the pH reached neutral (pH 7), and finally dried at 200 °C
for 3 h [24-26]. A schematic overview of the rice husk
silica extraction, Zeolite-A synthesis, and pyrolysis pro-
cesses is presented in Fig. 1.
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Fig. 1 Process flow diagram of rice husk silica extraction, Zeolite-A synthesis, and pyrolysis oil production. Silica from rice husk was extracted and

used as a precursor for Zeolite-A synthesis, which was then applied as a catalyst (1:0 to 1:20 w/w) in the pyrolysis of corncob biomass at 300 °C,

350 °C, and 400 °C to produce pyrolysis oil.

2.4 Pyrolysis oil production using catalytic pyrolysis
Corncob biomass was used as the raw material, prior to
pyrolysis, the physicochemical properties of the biomass
were determined through proximate and ultimate analyses,
as shown in Table 1. The relatively high moisture content
(23.64 wt%) is expected to promote the formation of an
aqueous phase during condensation, while the ash content
may contribute to enhanced char formation. The high oxy-
gen content of the biomass explains the abundance of oxy-
genated compounds observed in the pyrolysis oil.

A total 100 g biomass was placed into the pyrolysis
tube, and varying amounts of catalyst were added accord-
ing to catalyst-to-biomass ratios (w/w) of 1:0, 1:5, 1:10, 1:15,
and 1:20. The solid zeolite catalyst was thoroughly mixed

Table 1 Proximate and ultimate analyses of corncob biomass used as
feedstock for catalytic pyrolysis

Parameter Method Value (wt%)
Moisture content ASTM D3173 23.64
Ash content ASTM D3174 1.56
Carbon ASTM D5373 43.32
Hydrogen ASTM D5373 6.42
Nitrogen ASTM D5373 0.50
Sulfur ASTM D4239 0.056
Oxygen ASTM D3176 48.14

with the corncob biomass using a glass mortar and spat-
ula to ensure uniform distribution, and the mixture was
gently pressed prior to loading into the reactor. The pre-
pared samples were transferred to a fixed-bed stainless
steel reactor, consisting of a closed cylindrical vessel with
inlets and outlets for gas or steam and a condensation line
leading to a secondary container for collecting pyrolysis
oil and water. The reactor was custom-designed and fab-
ricated in-house (Malang, Indonesia) and operated under
controlled pyrolysis conditions with maximum tempera-
ture 500 °C. The reactor was heated externally using a
temperature-controlled furnace, with a controlled heat-
ing rate to ensure uniform temperature ramping to the tar-
get pyrolysis temperatures (300 °C, 350 °C, and 400 °C),
which were maintained for 60 min. As the pyrolysis pro-
ceeded, the volatile vapors were transported through hor-
izontal metal pipes to a vertical condenser containing an
internal oil cooler with circulating cooling water, condens-
ing the vapors into pyrolysis oil and aqueous fractions.
The organic fraction (pyrolysis oil) was collected and sub-
sequently analyzed using gas chromatography-mass spec-
trometry (GC-MS) (Shimadzu GCMS-QP2010 SE) to
determine its chemical composition [27, 28]. No carrier gas
was used in this procedure.



2.5 Determination of yield, density, viscosity, and
calorific value

2.5.1 Pyrolysis oil, char and gas yield determination
The yield of pyrolysis oil was calculated based on the mass
of pyrolysis oil products obtained after pyrolysis proses,
as shown in Eq. (1).

Mass product ( g)

Yield(%) = x100 M

Mass raw materials(g)

After pyrolysis process, the pyrolysis oil product was
collected in a pre-weighed container.

The biochar yield was determined by weighing the solid
residue remaining in the reactor after cooling to room
temperature and applying the same equation. The yield of
non-condensable gas was calculated indirectly by the mass
balance, assuming that the total mass of products equals
the initial mass of raw material, as expressed in Eq. (2).

Gas yield(%) =100 —(Pyrolysis 0il% +Char%) )

2.5.2 Density and viscosity measurement

The density of the pyrolysis oil was measured using a
25 mL pycnometer (Iwaki, Japan). The density was calcu-
lated using the Eq. (3).

Mass product in pycometer(g)

Density (g /mL) = A3)

Volume of product(mL)

All measurements were performed at room tempera-
ture (25 £ 1 °C). In addition, viscosity was determined using
a Brookfield digital viscometer (Iwaki, Japan) at 25 °C.
Approximately 20 mL of pyrolysis oil was placed in a sam-
ple adapter, and the appropriate spindle was selected accord-
ing to the expected viscosity range. The measurements were
recorded after the spindle achieved a steady rotational speed.

2.5.3 Calorific value determination

The calorific value of the pyrolysis oil was measured
using a Parr 6100 bomb calorimeter. Approximately 1 g of
pyrolysis oil was placed in a metal crucible and combusted
under a high-pressure oxygen environment at 3.04 MPa.
The higher heating value (HHV) was calculated based on
the temperature rise in the water jacket surrounding the
combustion chamber, as shown in Eq. (4).

CxAT

Calorific value(kJ/kg)= x1000, @)
where C is the heat capacity of the calorimeter sys-
tem (kJ/°C), AT is temperature (°C), m is mass of the
pyrolysis oil sample (g).

Puspitawati et al. | 5
Period. Polytech. Chem. Eng.

3 Results and discussion

3.1 Zeolite-A characterization

In this study, rice husk was used as a silica source for the
synthesis of Zeolite-A. The rice husk was obtained as agri-
cultural waste from rice harvesting in East Java. In this
study, 100 g of rice husk produced approximately 7-10 g sil-
ica, depending on the extraction conditions. The character-
ization tests indicated that the silica content in the rice husk
ranged from 90% to 98% [29]. This is comparable to pre-
vious studies reporting silica synthesis from palm oil mill
slag, which achieved a high silica content of 85.68% [30].
X-ray diffraction (XRD) (Bruker D2 Phaser, Germany)
analysis was performed to investigate the crystalline struc-
ture of the synthesized silica, providing detailed insights
into the materials phase composition and crystallinity, as
illustrated in Fig. 2.

In this study, the zeolite sample exhibits relatively low
crystallinity, which is typical for porous materials with
fine particle size. The zeolite is formed through the reac-
tion of several precursor compounds that result in a solid
structure composed primarily of aluminum, silicon, oxy-
gen, and sodium elements. The XRD pattern confirms the
presence of these elements within the zeolite framework.
When compared to standard patterns reported in previous
studies, some differences in peak positions and intensities
are observed. These differences may result from several
factors during the synthesis process, such as incomplete
or uneven mixing and very low concentration of NaOH
used (0.2 M), which was insufficient to fully dissolve the sil-
ica and form the aluminosilicate gel necessary for Zeolite-A
crystallization. To evaluate the effect of catalyst structure

Zeolite
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Fig. 2 X-ray diffraction (XRD) pattern of the synthesized Zeolite-A.
The sharp diffraction peaks indicate the presence of crystalline phases,
while the broad background suggests an amorphous component. Peaks

are consistent with typical Zeolite-A structure.
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on pyrolysis performance, corundum and Zeolite-A were
compared. Corundum, being chemically inert, served as
a baseline, showing minimal influence on pyrolysis reac-
tions. In contrast, Zeolite-A, despite its relatively low crys-
tallinity, exhibited a porous structure and active sites that
facilitated enhanced cracking and deoxygenation reactions.
This led to pyrolysis oil with higher hydrocarbon content,
increased density, and modified viscosity compared to inert
supports. These results indicate that the improvement in oil
quality was primarily due to the structural characteristics
and active sites of the zeolite rather than the inert support or
reactor surface. Optimizing the synthesis conditions, such
as NaOH concentration and precursor mixing, could further
enhance the crystallinity and catalytic efficiency, potentially
leading to even better fuel properties. A recent study by
Gougazeh and Buhl [31] showed that Zeolite-A forms as the
dominant phase at low NaOH concentrations (1.5-3.5 M),
while higher concentrations (>3.5 M) favor conversion to
hydroxysodalite with minor quartz consistently present.
Therefore, the relatively low alkalinity applied in this study
likely hindered the complete zeolite crystallization, lead-
ing to peak variations compared to the reference XRD data.
In addition, the limited contact among particles, both in
terms of quantity and mixing duration, can affect the consis-
tency of the crystal growth and the development of well-de-
fined phases, leading to variations in the diffraction pattern.

3.2 Effect of catalyst-to-biomass ratios on yield
production

The application of catalysts in biomass pyrolysis has been
widely reported to influence not only the product compo-
sition but also the physical and chemical properties of the
resulting pyrolysis oil. In the present study, this trend was
also observed, where catalytic pyrolysis using Zeolite-A
reduced the overall liquid yield compared to non-catalytic
runs. It should be noted that "pyrolysis oil" here refers only
to the organic fraction separated from the aqueous phase,
not to the total liquid collected. The pyrolysis oil yield was
effected by both the pyrolysis temperature and the cata-
lyst-to-biomass ratios, as presented in Fig. 3.

As shown in Fig. 3, the catalytic pyrolysis generally
resulted in a reduction of pyrolysis oil yield compared to
non-catalytic runs, particularly at higher catalyst load-
ings. At 300 °C increasing the catalyst-to-biomass ratio
from 1:0 to 1:20 resulted in a gradual decrease in pyro-
lytic oil yield from approximately 30% to 21%, a corre-
sponding increase in char from 35% to 40% and gas yields
from 35% to 40%. This trend suggests that an excessive

Temperature (°C)
300 300 300 300 300 350 350 350 350 350 400 400 400 400 400
10“ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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60 4 1

Yield (%)
[

20 _—

0 T T T T T T T T T T T T T T T
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[ ] Pyrolytic oil

[ | Char [~ Gas

Fig. 3 Effect of catalyst-to-biomass ratio on pyrolysis oil yield at
different pyrolysis temperatures (300 °C, 350 °C, and 400 °C) using
Zeolite-A catalyst.

catalyst loading at relatively low temperatures promotes
the incomplete volatilization of the biomass and enhances
solid residue formation due to catalytic condensation and
polymerization reactions.

At 350 °C a different behavior was observed. The pyroly-
sis oil yield decreased moderately from approximately 33%
in the non-catalytic experiment to 23% at a catalyst ratio
of 1:20, while the biochar yield remained relatively stable
within a narrow range from 20% to 23%. In contrast, the gas
yield increased markedly from 47% to 54% with increasing
catalyst ratio. This indicates that at intermediate tempera-
tures Zeolite-A primarily facilitates secondary cracking and
deoxygenation reactions, converting condensable vapors
into permanent gases rather than solid char.

At 400 °C the highest pyrolytic oil yield of approximately
34% was achieved under non-catalytic conditions, while
the catalytic runs showed a more complex trend. A mod-
erate catalyst ratio 1:5 produced a comparable pyrolytic oil
yield about 33% whereas higher catalyst loadings generally
favored gas formation. The gas yield increased substantially
from 53% at 1:0 to 59% at 1:20 while the char yield remained
relatively low from 13% to 15% reflecting enhanced thermal
cracking and gasification reactions at elevated temperatures.
The slight increase in char at higher catalyst ratios may be
attributed to coke formation on the catalyst surface, a com-
mon phenomenon in zeolite-catalyzed pyrolysis.

This contrast illustrates that while moderate tem-
perature and lower catalyst ratios enhance pyrolysis



oil production, temperatures beyond the optimal range
or high catalyst loading can be detrimental to liquid
yield. These observations align with previous stud-
ies by Zhang et al. [32] which reported that pyrolysis oil
yield increases with temperature until reaching an opti-
mum, after which further heating favors gas formation.
Similarly, the synergistic interaction between desulfur-
ization ash and corncob observed in a previous study
by An et al. [33] showed a comparable trend, where the
pyrolysis oil yield reached a maximum of 30.48 wt% at a
ratio of 80:100, representing a 30.9% increase compared
to corncob pyrolysis alone [27]. Futuremore, in a recent
study Bello et al. [34] also reported that catalytic pyrolysis
of corncob using 10% urea at 400 °C increased the pyrol-
ysis oil yield from 49.33% to 54.66% and improved the
chemical composition, highlighting the critical influence
of both temperature and catalyst concentration on pyroly-
sis oil production and quality [34].

In this study, the application of Zeolite-A from rice
husk exhibited a similar catalytic principle, where moder-
ate catalyst loading and temperature favored pyrolysis oil
formation. However, excessive Zeolite-A addition led to
decreased liquid yield due to intensified secondary crack-
ing and gasification reactions. Overall, Zeolite-A proved
to be an effective catalyst for enhancing pyrolysis oil yield
under optimized conditions, confirming its potential for
biomass pyrolysis applications.
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3.3 Effect of catalyst ratio on density and viscosity

The density and viscosity of pyrolysis oil are important
physical properties that determine its flow behavior, stor-
age stability, and compatibility with existing fuel infra-
structure. These properties are closely related to the
molecular mass distribution and oxygenated compounds
present in the pyrolysis oil. In this study, varying cata-
lyst-to-biomass ratios were applied during pyrolysis at dif-
ferent temperatures (300 °C, 350 °C, and 400 °C) to inves-
tigate their effects on the resulting pyrolysis oil density
and viscosity, as presented in Figs. 4(a) and 4(b).

As shown in Fig. 4(a), the pyrolysis oil density increased
with catalyst ratio (w/w) at all pyrolysis temperatures.
At 300 °C, the density ranged from 1.28 g/cm? (1:0 w/w)
to 1.34 g/cm® (1:20 w/w). A similar trend was observed
at 350 °C, increasing from 1.24 g/cm?® to 1.33 g/em®.
At 400 °C, the highest density (1.35 g/cm?®) occurred
at 1:15 w/w, highlighting enhanced catalytic effects at ele-
vated temperatures. The increasing density can be attributed
to cracking and polymerization reactions promoted by the
catalyst, which favor the formation of heavier molecular
compounds. These results are quite similar to the findings
of Abatyough et al. [35] who reported that the application
of zeolite prepared from wastepaper sludge effectively
catalyzed the thermal cracking of corncob-derived crude
pyrolysis oil. Their study also showed that the upgraded
pyrolysis oil exhibited a density of 0.852 g/em® [35].
In this study, the use of Zeolite-A promoted secondary

Density (g/mL)

=
h
1

00 HZ
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-
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Fig. 4 (a) Density and (b) viscosity of pyrolysis oil produced at 300 °C, 350 °C, and 400 °C under various catalyst-to-biomass ratios (w/w) of 1:0, 1:5,

1:10, 1:15, and 1:20. The results show that catalyst presence influences the molecular composition of the pyrolysis oil, affecting its density. Higher

catalyst ratios generally lead to lower density values, indicating improved fuel characteristics closer to conventional liquid fuels.
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reactions that increased the density of pyrolysis oil with
increasing catalyst ratio, suggesting similar catalytic
behavior in improving the quality and stability of the pro-
duced liquid fuel. These reactions promote the forma-
tion of heavier molecular compounds in the pyrolysis oil.
High-density fuel generally implies higher energy content
per unit volume, which is beneficial for energy efficiency.
However, excessively high density may hinder fuel atomi-
zation and combustion efficiency, as denser fuels are harder
to vaporize and may lead to incomplete combustion.

The pyrolysis oil viscosity also depended on both
temperature and catalyst ratio (Fig. 4(b)). At 300 °C,
111.24 mm?*s (1:0 w/w)
to 116.00 mm?/s (1:20 w/w). For all catalyst-to-biomass

viscosity increased from
ratios (1:0-1:20 w/w), the viscosity decreased mark-
edly at 350 °C (85.28-88.22 mm?/s) compared to 300 °C
(111.24-116.00 mm?/s),
cracking of heavier compounds into lighter fractions.
At 400 °C, a slight increase in viscosity (93.36-97.09 mm?/s)
was observed, attributed to the formation of larger aromatic

indicating extensive thermal

structures through condensation processes enhanced by
higher catalyst loadings. These results indicate that tem-
perature and catalyst ratio jointly control the molecular
structure and flow behavior of pyrolysis oil. In this study,
pyrolysis oil produced through pyrolysis generally exhib-
its moderate to high viscosity and a density higher than
that of conventional fossil fuels. A previously study by
Feng et al. [36] has reported that the biooil from corncob
at 500 °C achived viscosity and density of 67 mPa's and
1.18 g/em?, respectively. For improved handling and perfor-
mance, lower viscosity and density are preferred.

However, the inherent chemical composition of pyrol-
ysis oil restricts the extent to which these properties can
be reduced without additional treatment [37]. This research
trend indicates that moderate catalyst addition enhances
molecular cracking and reduces viscosity, thus improv-
ing pyrolysis oil fluidity. However, after a certain point,
excessive catalyst addition can lead to secondary polymer-
ization of lighter organic molecules on the catalyst, form-
ing heavier, more viscous compounds [38, 39]. This study
shows that catalyst addition affects density and viscos-
ity nonlinearly. The moderate point of catalyst addition is
at 1:15 or 0.0486 where the balance between cracking and
recombination reactions maximizes the desired pyrolysis
oil properties. Lower viscosity favors easier pumping and
spraying in combustion systems, while the appropriate den-
sity enhances energy content per unit mass. These findings
indicate that proper control of catalyst ratio and temperature

is crucial to tailoring pyrolysis oil characteristics for practi-
cal fuel applications. The results aligned with the previous
studies emphasize that catalyst-promoted thermal degrada-
tion pathways govern the molecular structure of resulting
pyrolysis oils and, consequently, their physical properties.

3.4 Effect of catalyst ratio on calorific value at 400 °C
The calorific value of pyrolysis oil is a key indicator of
its energy content and suitability as a fuel. In this study,
the pyrolysis oil samples produced at 400 °C under vary-
ing catalyst ratios exhibited significant differences in their
heating values, as presented in Table 2.

The calorific value of pyrolysis oil reached a maximum
of 27769 klJ/kg at a catalyst-to-biomass ratio of 1:15 (w/w),
indicating the optimal catalyst loading for energy
enhancement. Moderate catalyst concentrations likely
promote efficient deoxygenation and cracking, whereas
both lower (1:20 w/w) and higher (1:0—1:5 w/w) ratios were
less effective, either due to insufficient activation or exces-
sive secondary reactions. This is supported by the results
of research conducted by Liu et al. [40] showing that the
increase in catalyst concentration affects the decrease in
water content and the increase in calorific value of pyrol-
ysis oil. However, in the current study, an overly high cat-
alyst ratio (1:5) did not result in further improvement and
instead showed a slight drop in calorific value, indicating
an optimal threshold at 1:10. When the catalyst loading is
high or the contact time is extended, lighter fragments can
experience secondary reactions, leading to the formation
of heavier compounds or further gasification. This reduces
the proportion of desirable liquid pyrolysis oil, even though
the calorific value per kilogram may increase. At the same
time, the rise in gas production lowers the overall liquid
yield, so although the calorific value of the remaining liq-
uid may be higher, the total energy captured in the liquid
fraction decreases, potentially producing more unwanted
heavy compounds [41]. Thus, while both studies support
the positive role of catalysts in enhancing calorific value,
the present findings emphasize the existence of an optimal
ratio specific to the feedstock and catalyst used.

Table 2 Heating value of pyrolysis oil at 400 °C
Calorific value (kJ/kg)

Catalyst-to-biomass ratios (w/w)

1:0 27047
1:5 27511
1:10 26775
1:15 27769
1:20 26829




3.5 GC-MS analysis on pyrolysis oil with different
catalyst ratio

GC-MS analysis of pyrolysis oil at catalyst-to-biomass
ratios of 1:0, 1:5, 1:10, 1:15, and 1:20 (w/w) showed that, all
of them have acetic acid, propionic acid, furan and phe-
nol (Fig. 5 and Table 3). GC-MS was used to identify and
characterize the individual chemical compounds pres-
ent in the pyrolysis oil, based on their retention times and
mass spectra, rather than to determine a single compound.
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Based on the concept, GC-MS separates components
based on the volatility of a substance. It can be seen in
the table that the real time on acetic acid, propionic acid,
furan and phenol have relatively the same value. Table 3
shows sample testing from processes with the same tem-
perature, this is one reason why the components in it are
almost the same. Based on these samples there are some
differences in the components where at a catalyst-to-bio-
mass ratio of 1:0 (w/w) there is benzene acetamide and
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Fig. 5 GC-MS and relative compositions of pyrolysis oil with catalyst-to-biomass ratio (a) 1:0; (b) 1:5; (c) 1:10; (d) 1:15; and (e) 1:20 w/w



10 | Puspitawati et al.

Period. Polytech. Chem. Eng.

Table 3 Chemical composition of pyrolysis oil at 400 °C with varying catalyst-to-biomass ratios, as identified by GC-MS analysis

Catalyst-to-biomass

ratio (wiw) Peak Retention time (min) Percentage (%) Component Formula
1 1.725 36.1 Acetic acid CH,0,
2 2.212 4.32 Propanoic acid CHO,
3 3.46 1.59 Furan CHO
Ho 4 4.092 3.18 Benzene acetamide CHNO
5 9.013 51.45 Hydroxybenzene CHO
6 16.892 3.36 Phenol CHO
1 1.578 4.4 2-Propanone CHO
2 1.847 47.27 Acetic acid CH,0,
1:5 3 2.222 7.02 Propanoic acid CH,O0,
4 3.462 3.84 Furan CH,0
5 9.021 37.48 Phenol CHO
1 1.833 41.99 Acetic acid CH,0,
2 2.217 6.2 Propanoic acid CHO,
1:10 3 3.459 2.64 Furan CH,0
4 7.235 3.79 2-Cyclopenten-1-one CHO
5 9.024 45.38 Phenol CH,O
1 1.501 3.68 2,5-Cyclooctadien-1-ol CH.O0
2 1.823 39.86 Acetic Acid CH,0,
3 2.197 5.66 Propanoic acid CH.O,
1:15 4 2.358 1.37 Androstane C,H,,
5 3.574 341 Spiro[4.6]Jundecane C,H,,
6 9.037 42.62 Phenol CHO
7 16.885 3.4 2-Methoxyphenol (guaiacol) C,H0,
1 1.822 26.46 Butanoic acid C,H,0,
2 1.858 5.16 Hexanoic acid CH,,0,
1:20 3 2.283 3.84 Propanoic acid CH.O,
4 8.958 62.95 Phenol CHO
5 16.775 1.58 2-Methoxyphenol (guaiacol) C,H,0,

2-methoxyphenol (guaiacol) which is a derivative com-
pound of phenol. At a catalyst-to-biomass ratio 1:20 2-propa-
none was detected, whereas 2-cyclopenten-1-one was iden-
tified at a ratio 1:15. At a ratio 1:10, 2,5-cyclooctadien-1-ol
was observed together with two hydrocarbon compounds,
namely androstane and spiro[4,6]Jundecane. In contrast, at
aratio 1:05, hexanoic acid was detected. The sample with a
catalyst-to-biomass ratio 1:10 showed the best performance,
because hydrocarbons were clearly detected in the product.

The data shows the presence of phenolic groups, which
are aromatic compounds containing a hydroxyl group
attached to a benzene ring. This sample also contain acids
(acetic and formic), as well as aldehydes and ketones,
which are oxygenated compounds derived mainly from the
thermal decomposition of the cellulose and hemicellulose
in the biomass. Aldehydes and ketones have lower heating
values than phenolics or hydrocarbons due to their high

oxygen content. Oxygen reduces the net energy released
during combustion. Due to their strong aromatic bonds,
phenolics have high calorific value compared to other oxy-
genated compounds. Their calorific value exceeds those
of most aldehydes, ketones, and organic acids in pyrolysis
oil, which generally range from 10-15 MJ/kg. Aromatic
phenolics also combust more cleanly and steadily than
reactive aldehydes, enhancing effective heat recovery.
Additionally, a lower proportion of low-molecular-weight
oxygenates reduces incomplete combustion, thereby
improving the overall energy efficiency [42].

4 Conclusion

This study demonstrates that rice husk-derived Zeolite-A
effectively modulates the properties of corncob pyroly-
sis oil through catalytic fast pyrolysis. Characterization
of the synthesized Zeolite-A confirmed the formation of



a primarily amorphous structure with low crystallinity,
typical of fine porous materials, indicating successful uti-
lization of rice husk-derived silica as a catalyst precursor.
The overall optimal conditions were identified at 400 °C
with a 1:15 w/w catalyst ratio, where pyrolysis oil exhib-
ited a balanced combination of high density (1.35 g/mL),
suitable viscosity (97.09 mm?/s), and enhanced fuel sta-
bility. GC-MS analysis confirmed the presence of hydro-
carbons such as androstane and spirocyclic compounds,
demonstrating effective deoxygenation and fuel stabiliza-
tion. These results suggest that by carefully adjusting cat-
alyst ratio and pyrolysis temperature, pyrolysis oil charac-
teristics can be tailored for high-quality, energy-efficient
fuel production, offering a sustainable strategy for valoriz-
ing agricultural residues. Future research should focus on
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