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Abstract

In the production of vinyl chloride monomer (VCM), the separation of VCM vapors from ethylene dichloride (EDC) in the distillation
column is complicated due to uncertain dynamic behavior and nonlinearity of the process and results in poor controlling of the
column which may overlook product quality. In this regard, the column is simulated with integrated tuned-controllers using Aspen
Plus dynamics. For system identification of the VCM column, the nonlinear autoregressive model with exogenous inputs (NLARX)
gives a higher Fit% for the real-time data in comparison with the first order plus time delay (FOPTD) model. The study shows the
application of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) based control strategies, alongside
a traditional proportional-integral-derivative (PID) controller for the control of the top composition and bottom composition of the
VCM column. The results indicate that for top composition, the ANFIS-based controller having an integral time absolute error (ITAE)
value of 0.132 outperforms ANN-based controller with an ITAE value of 0.78 in terms of set point tracking, and a similar behavior is
found for bottom composition. In terms of disturbance rejection, the ANFIS having an ITAE value of 0.036 outperforms ANN having an

ITAE value of 1.03 for top composition and shows the same behavior for bottom composition while the PID control exhibits significantly

lower performance in both set point tracking and disturbance rejection.
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1 Introduction

1.1 Vinyl chloride monomer (VCM) column

VCM is a key chemical monomer in the production of
polyvinyl chloride (PVC), a versatile polymer with wide-
spread applications in the construction, automotive, pack-
aging, and healthcare industries [1]. Given the impor-
tance of VCM in the manufacturing supply chain and its
significant impact on various industrial sectors, continu-
ous research and development efforts are directed towards
enhancing the efficiency, reliability, and sustainability of
VCM production processes. The VCM distillation col-
umn is located at a VCM processing plant in which vinyl
chloride is separated from ethylene dichloride (EDC) as
shown in Fig. 1. VCM is produced by the pyrolysis of EDC
along with by-product hydrogen chloride. Unconverted
EDC goes into the HCI column for removal of HCI from
mixture followed by a VCM column [2].

Controlling the purity of VCM at both the top and bot-
tom products of the column in VCM production processes
is crucial for ensuring product quality, process efficiency,
and regulatory compliance. Maintaining a high purity level
at the top of the column is necessary for producing PVC
with consistent quality and performance characteristics,
while precise control at the bottom removes impurities
to protect downstream units and result in a safe working
environment. Innovative approaches, including the appli-
cation of intelligent control systems, are increasingly being
researched to address the challenges associated with indus-
trial distillation columns along with their production and
market demand [2, 3]. Using artificial intelligence (AI)
based approaches, the VCM column also needs to be con-
trolled to meet the required demands and specifications
while being operated under large operating ranges.
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Fig. 1 Process flow diagram (PFD) of VCM process

1.2 System Identification of Distillation Column

In order to set up a control structure, it is essential to iden-
tify the system based on dynamics. System identification
uses input and output data to generate a mathematical
model of a system [4]. The steps of system identification
include measurement of input/output signals, selection of a
candidate model structure, estimation of adjustable param-
eters, and validation of the estimated model [5, 6]. One of
the challenges in system identification for complex systems
is the problem of the researcher introducing biases into the
model, which can affect the accuracy of the recognized
model [7]. Another challenge involves avoiding specify-
ing the model structure too restrictively or too generally,
as this can lead to biased or high-variance models [8].
To overcome these issues, Recent research has highlighted
the efficiency of nonlinear models over linear models for
dynamic systems due to enhanced flexibility, accuracy, and
robustness in representing dynamic systems [9, 10].

For the optimization of the distillation column, mathemat-
ical models obtained from system identification are used for
a better understanding of the behavior of the column and for
developing control structures [11, 12]. For the model iden-
tification of distillation columns, a novel approach combin-
ing hybrid particle swarm optimization and artificial neural
networks (ANNSs) is developed, showcasing the better per-
formance of the controller for nonlinear and dynamic col-
umns [13]. An Al-based predictive control algorithm is
developed for distillation column systems to accurately pre-
dict system behavior and also design a corresponding control
scheme to deal with the system effectively [14]. Further, the
continuous rise in global energy demand necessitates profi-
cient energy production and utilization, making it essential to
carry out the process efficiently while handling the complexi-
ties of distillation columns for high-end-product quality [15].

The literature review presents the usage of nonlinear mod-
els in controlling of dynamic and intricate systems [16, 17].

For system identification of an industrial debutanizer col-
umn, Fatima et al. [18] developed first order plus time
delay (FOPTD) models and nonlinear autoregressive with
exogenous inputs (NLARX) models using the system identi-
fication toolbox in MATLAB and compared both models on
the basis of Fit%. NLARX model shows a higher fit % with
the real data. Likely, the application of NLARX for system
identification can be seen in [19, 20]. Further, the application
of other mathematical models such as Wiener model [21, 22],
FOPTD model [23] and Hammerstein model [24, 25] on
distillation column for system identification have been
reported. Among all these, NLARX is the most admired
one due to its extension of linear autoregressive exogenous
(ARX) models to capture complex nonlinear behaviors in
data. Conclusively, the linear or nonlinear models help in
understanding the insights of the process and developing
advanced process control (APC) of the system.

1.3 Al-based control approaches for distillation column
Al-based control schemes have been addressed in the lit-
erature. ANN [26-28], generic model control (GMC) [29],
support vector machine (SVM) [30], fuzzy logic con-
trol (FLC) [31-33] and other hybrid-based control meth-
ods [34] have been reported. ANN and FLC approaches
are the most widely used algorithms in chemical processes
along with hybrid control techniques.

The application of the above-mentioned Al-based con-
trol schemes on distillation columns is found in the liter-
ature review. Diaz [35] compared traditional proportional
integral (PI) controllers with various strategies, including
Expert, Fuzzy, and Neural-Network control on a simu-
lated distillation column. The Neural-Network control with
the NARMA-L2 controller is found to be the most effec-
tive, providing good disturbance rejection and fast set-point
tracking. Fatima et al. [36] applied ANN and adaptive neu-
ro-fuzzy inference system (ANFIS) based control strategies
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to control the top and bottom composition of a debutanizer
column and found the performance of the ANFIS-based con-
troller better in set point tracking of top and bottom streams
and disturbance rejection. In Mishra et al. [32], a fraction-
al-order fuzzy proportional-integral-derivative (FOFPID)
controller acted as an intelligent control system to address
the complex dynamics of a distillation column, providing
a practical solution for managing the complexities of the
distillation process. Shin et al. [26] applied neural network
model predictive control on a distillation column with an
optimizer for optimum solution and for prediction of future
responses. The proposed methodology showed high con-
trollability in multivariable system. Kwon et al. [37] devel-
oped ANN-based prediction model for optimization of
distillation column by reducing the energy requirement.
The procedure was followed by data collection, character-
istic data collection to reduce minimum learning time and
normalization to improve prediction performance. A non-
linear hybrid model predictive controller was presented by
Elsheikh et al. [38] to control the composition of a mother
liquor distillation column with a variable feed flow. A data-
based component is added to a phenomenological model to
reduce the plant-model mismatch.

Hadian et al. [39] proposed distillation column pre-
dictive controller using an event-based neural network
which is a multiple-input-multiple-output (MIMO) non-
linear time-delayed system, using cuckoo optimization
algorithm (COA). A novel observer-based direct adap-
tive Neuro-sliding mode control strategy was proposed by
Cheng [40] for a nonlinear MIMO system in which the
only known variable is the system output. A radial basis
function (RBF) NN is constructed to take into consid-
eration the unknown control laws, model dynamics, and
state variables. To forecast and operate a continuous eth-
anol-water nonlinear pilot distillation column, Serra [29]
described applying feedforward ANN with genetic algo-
rithms (GA). When compared to four decoupled propor-
tional-integral-derivative (PID) controllers, the suggested
approach was determined to be better. Chavan et al. [41]
applied FLC coupled with conventional PID using
MATLAB on a non-linear MIMO distillation column. The
algorithm delivered a smooth control when outputs were
compared in the simulation environment.

Maldonado et al. [42] applied two different control strat-
egies based on PID and fuzzy logic on a non-linear distilla-
tion binary column. It was found that the transfer function
coupled and decoupled of the system to solve the prob-
lem of monitoring and controlling of distillation column.

Ochoa-Estopier et al. [43] discussed the application of
machine learning for prediction of flooding in distillation
column using data driven approach. The approach relies
on real time data which is used for training of random for-
est algorithm-based model for prediction of pre-operation
stage before flooding. Neves et al. [44] applied ANN based
control system on extractive distillation process enabling
simultaneous consideration of changes in feed and ethanol
specifications. The proposed control system determines
specific set points to adjust specifications and rejects dis-
turbances, outperforming conventional control methods
based on errors. Overall, the integration of an ANN-based
control system incorporates in enhanced adaptability, effi-
ciency, and accuracy in extractive distillation operations.

1.4 Methodology for the VCM column

The literature review on distillation column control shows
a major dependence on either ANN or FLC approaches [3].
The literature shows the limitations of single methodology
to be insufficient to properly address the challenges inher-
ent in distillation column [45]. It is more convenient to use
unified framework combining both ANN and FLC based
methodologies to develop ANFIS, which merges the inter-
pretability and linguistic reasoning of fuzzy logic with the
learning capabilities of neural networks [46]. By combining
these approaches within the ANFIS framework, improved
control performance, robustness, and compliance in distil-
lation column operations can be achieved [47, 48].

This paper presents the following methodology to
develop Al-based control structures. Initially, the dynamic
simulation of VCM distillation column is created through
Aspen Plus and is followed by setting and tuning up the
controllers. Aspen Plus is chosen due to being indus-
try-standard renowned accurate tool in process modeling
and simulation. It provides precise thermodynamic prop-
erty predictions, extensive libraries of chemical compo-
nents, and a robust dynamic simulation environment, mak-
ing it ideal for capturing the real-time dynamics of complex
industrial processes like distillation [49]. The transfer
function model FOPTD and NLARX model of the sys-
tem is developed using system identification toolbox in
MATLAB. These models help in building up the control
structures. MATLAB's integrated environment for design-
ing and testing Al-based control algorithms ensures opti-
mal performance and seamless execution [50]. Innovative
control strategies including ANFIS and ANN are designed
and implemented on the industrial VCM column for control
of top and bottom composition; the comparative evaluation



of performances of Al-based control and traditional PID
based control is carried out based on step change and dis-
turbance rejection using real-time data.

2 Simulation-based Control of VCM Column

The distillation column consists of a tall vertical structure
with 40 trays. The feed F' coming from the bottom of the
HCI column enters at stage 23 (feed tray), and is heated,
causing VCM to be vaporized. As the vapor rises through
the column, it meets the valve trays. These components pro-
vide a large surface area for condensation and vapor-liquid
equilibrium to occur. At the top of the column, the vapor is
condensed back into a liquid through the condenser, and the
purified vinyl chloride is collected as fraction x,, and some
of the portion is returned as a reflux to the column as L.
Meanwhile, the heavier component, i.e. EDC that did not
vaporize as readily remains in the bottom of the column,
is recycled to the light column for re-purification as frac-
tion x,, while some portion of the EDC goes back to the rec-
tifying section of the column as V. The column is controlled
by overhead (O/H) and bottom control loops. The level
control of the reflux drum in the overhead control loop is
achieved through the regulation of the distillate flow rate.
Meanwhile, the reflux ratio is fine-tuned to maintain con-
trol over the distillate composition. The reboiler vapor rate
maintained by the temperature is controlled by the steam
flowrate in the reboiler as shown in Fig. 2. Normally, the
extreme end temperatures are used as the variables for con-
trol of the column [51]. However, in the current study, the
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Fig. 2 Schematic Diagram of a binary Distillation Column
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top composition and bottom composition of vinyl chloride
are the controlled variables, and reflux flowrate and reboiler
flowrate are the manipulated variables. The unit operation
block data of the VCM column is presented in Table 1.
Aspen Plus® software [52] is used in this study to build
a steady-state simulation of the VCM column. Reliability in
design of column is largely dependent on the choice of
thermodynamic model and the precision of parameter
values [53]. Hence, the nonrandom two-liquid (NRTL)
model equation of state has been selected as the prop-
erty package (base method) in the steady-state simulation
of VCM column as it involves both liquid-liquid equilib-
rium (LLE) and vapor-liquid equilibrium (VLE) [54]. This is
followed by Aspen Dynamics® simulation, which is devel-
oped utilizing licensed Aspen Tech® software and industrial
data. Parameters from Table 1 are used for dynamic evalu-
ation of the process. After exporting the dynamic simula-
tion, controllers are set up as shown in Fig. 3. The dynamic
simulation is being run and checked for set-point tracking as
shown in Fig. 4 and closed loop auto-tune variation (ATV)
test for the temperature controller in order to tuning of con-
troller as shown in Fig 5. For tuning up the controllers,
Tyreus-Luyben PI method was chosen over Ziegler-Nichols
proportional integral (PI) control method due to its improved
robustness and stability [55]. The input/output data in the
form of manipulated variables and controlled variables, i.e.
top composition and bottom composition is obtained from
the simulation as shown in Fig. 6. After being normalized, the
data is split into two subsets: 40% of the data sets are tested
(validation) and 60% of the data sets are used for training.

3 System Identification of VCM Column
To address the nonlinear and complex behavior of distilla-
tion columns, a best-fitted mathematical model is required

Table 1 Parameters of the VCM column

Parameter Value
VCM tower height 26.67 m
Tower diameter 1.69 m
Tray count 40
Tray type Valve
Condenser pressure 583.85 kPa
Condenser design Partial
Feed temperature 105 °C
Feed mass flowrate 65612 kg/h
Pressure of feed 1185.8 kPa
O/H liquid mass flowrate 22504 kg/h
O/H vapor mass flowrate 47510 kg/h
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controlled variable

for the system [56]. In this study, for model identification of
industrial VCM column, the FOPTD transfer function model
and NLARX model are used and compared. Two 2 % 1 mul-
tiple-input-single-output (MISO) systems are created using
the system identification toolbox in MATLAB. In the first
MISO Model 1, reflux flowrate (R) and reboiler flowrate (Q)
serve as input variable and top product composition (x,)
as output variable, while in the second MISO Model 2,
the input variables are R and Q and the output variable is bot-
tom product composition (x,) with a sampling rate of 60 s.

A sample of 2500 input-output data sets is inserted
in the system identification toolbox. To develop a lin-
ear FOPTD model, the algorithm uses the "prediction
focus" option to minimize the final prediction error (FPE)
and mean square error (MSE), and refine until the best
model is achieved. The parameters of the identified linear
FOPTD transfer function model along with fit% of the
model with data are shown in Table 2.

The above two MISO models are used for identification of
nonlinearities in VCM column using NLARX model as well.
Developing NLARX models can be challenging, particularly
when it comes to creating and selecting appropriate input
and output regressors. Increasing the number of delays adds

Table 2 Specification of linear FOPTD models for top composition (x,)

and bottom composition (x,)

Parameter Model 1 (x,) Model 2 (x,)
Model gains

K, —0.00134 2.64478
K, 0.56784 0.02389
Time constants

7, 145.48 343.23
7, 89.0087 22.8909
Time delays

th 25.89 30
s 22.90 0
Errors and Fit%

FPE 0.0166 6.7E-5
MSE 0.0164 6.62E-5
Fit% 73.36 57.09

complexity to the model, so it's important to keep the struc-
ture as simple as possible while maintaining accuracy [21].
NLARX uses input and output regressors to predict the
dynamic of the system as shown in Fig. 7. Sigmoid function
is used as dynamic nonlinearity estimator. For the two non-
linear MISO models in this case, the parameters were set as
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n,=3,n,=[44],and n,_=[1 1]. The best set of regressors
was identified by determining which combination provided
the highest fit percentage (Fit%) between the system's actual
output and the model's estimated output [18].The specifica-
tion of the models along with the values of FPE, MSE and
fit% of model with the actual data is given in Table 3.

By comparing values of FPE, MSE, and Fit% of Model 1
and Model 2 between FOPTD and NLARX, it is found that
the NLARX model is best fitted to the actual data and closely
represents the actual dynamic of the process for both models.

4 Implementation of AI-Based Control Models

4.1 Development of ANN Models

ANN being a powerful tool, is capable of handling complex
and nonlinear dynamics with accuracy along with excel-
lence in nonlinear control, adaptive control, and predictive
control [40, 44, 57, 58]. ANN uses historical data for sys-
tem model development, ensuring real-time control adjust-
ments [59]. As shown in Fig. 8, the ANN structure con-
tains three layers; the input layer, the single hidden layer,
and the outer layer. The input layer receives the features
or data points (x,, x,, ..., x,) along with bias terms (0,) that
enhance the model's flexibility. Each input is associated with
weights (w,) that determine the strength of its connection to
neurons in the next layer. The hidden layer, which may con-
tain multiple layers, processes these inputs by computing the
weighted sum of inputs, adding a bias, and passing the result
through an activation function (f) such as ReLU, sigmoid,

Table 3 Specifications of NLARX models for top composition (x,)) and

bottom composition (x,)

Model 1 (x,) Model 2 (x,)
Nonlinear function Sigmoid Sigmoid
Number of units 10 10
n, 4 4
n, [44] [4 4]
n, [11] [11]
FPE 0.0003976 9.7E-8
MSE 0.0003887 9.6E-8
Fit% 95.9 98.36

or tanh. This activation function introduces non-linearity,
enabling the model to learn complex patterns. The output
layer generates the final output values (y,, y,, ..., ) based
on the processed information from the hidden layer [60].
ANNSs can handle complex patterns and relationships in data,
while NLARX models are dedicated to capturing nonlinear
dynamics in connection with external inputs [61]. Using a
hybrid structure combining both ANN and NLARX gives
the advantages of both methods, i.e., better model dynamic
systems and predictive analysis of time series data.

The current study shows the application of an ANN-
based model for prediction of top and product composi-
tions using the series-parallel structure of the NLARX
network. The hidden layer, whose size is determined
through an optimized hit-and-trial process, uses a tan-
gent sigmoid (tansig) transfer function, while the output
layer uses a linear (purelin) transfer function. The choice
of the training algorithm and the number of neurons
in ANN structure is critical to its performance and appli-
cability. The Levenberg-Marquardt (LM) algorithm was
selected for training the network due to its efficiency and
fast convergence for medium-sized datasets [60, 62, 63].
LM combines the advantages of gradient descent and
Gauss-Newton methods, making it particularly effective
for complex, nonlinear systems such as distillation column
processes [63, 64]. The number of neurons in the hidden
layer was determined based on the complexity of the prob-
lem, with 14 neurons for the top composition and 10 for
the bottom composition. This configuration was selected
through empirical testing and cross-validation to balance
the model's capacity to capture intricate relationships in
the data while avoiding overfitting.

It is chosen for its balance between robustness and
fast convergence, complemented by the application of
early stopping criteria. Table 4 shows the parameters of
the developed ANN model.

4.2 Development of ANFIS model

ANFIS is a combination of an ANN and a Takagi-Sugeno-
Kang (TSK) fuzzy inference system [65]. TSK is chosen for
ANFIS over Mamdani's fuzzy inference due to being com-
putationally efficient and more compact [35]. This hybrid
robust structure holds the strengths of both ANN and fuzzy
logic, that can effectively combines these methodologies [66].

Fig. 9 illustrates the structure of an ANFIS, consisting of
five distinct layers, each performing a specific function in
the process of fuzzy inference. In the first layer (fuzzifica-
tion layer), input variables X and Y are passed through mem-
bership functions (4,, 4,, B, B,) to convert crisp inputs into
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Table 4 Parameters of ANN structure for top composition and bottom

composition
Parameter Description
Network type NARX-NN
No. of layers 3
Number of neurons in hidden layer 14(top), 10 (bottom)
Epochs 500
Training algorithm Levenberg-Marquardt
Performance function RMSE
Hidden layer transfer function Transig
Output layer transfer function Purelin

fuzzy sets. These membership functions determine the degree
of belonging of the inputs to specific fuzzy sets. The second
layer (rule layer) applies fuzzy logic rules using the outputs
from the first layer. Each node represents a rule, and the fir-
ing strength of each rule is computed as the product (IT) of
the corresponding membership degrees. The third layer (nor-
malization layer) normalizes the firing strengths by dividing
each rule's strength by the sum of all rule strengths, ensuring
the outputs are proportional. In the fourth layer (defuzzifica-
tion layer), the outputs from the normalized layer are used to
calculate rule contributions. Each rule contributes a weighted
output based on its firing strength and associated param-
eters. Lastly, the fifth layer (summation layer) aggregates

the outputs from all rules by summing them up to produce
a single crisp output (f) [67]. This structure allows ANFIS
to learn and adjust both the membership functions and rule
parameters during training, making it a powerful tool for
modeling nonlinear systems. ANFIS, being a universal
approximator, offers significant help in modeling complex
systems. In essence, it automates the tuning of membership
functions (MFs) of Sugeno fuzzy model using the training
input-output dataset, and associated parameters within a
fuzzy inference system (FIS) [68].

For the current study, the ANFIS structure is devel-
oped using a hit-and-trial method for finding the optimal
type and number of MFs. In particular, Gaussian MFs are
used for the input variables due to their smooth and con-
tinuous nature, providing better approximation capabil-
ities [69]. To simplify the input space by partition, sub-
tractive clustering is chosen over grid partitioning due to
its efficient and scalable approach, especially with high-
er-dimensional data, by generating fewer rules and avoid-
ing the exponential growth of rules that grid partitioning
entails [70]. A hybrid algorithm, merging least squares
estimation with backpropagation, is utilized for optimi-
zation, ensuring effective tuning of both the premise and
consequent parameters. The model is trained, and its per-
formance is subsequently tested to validate its predictive
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accuracy and generalization capability. The parameters
of the ANFIS structure are listed in Table 5.

4.3 Comparison of the ANN and ANFIS Models

To forecast the accuracy of the prediction, ANN and
ANFIS are compared using the root mean square
error (RMSE) criteria. The error levels for the models cre-
ated using the ANFIS technique are comparatively lower
than those for the ANN, as the table illustrates. Overall,
the ANFIS demonstrated improved prediction perfor-
mance with reduced RMSE values as shown in Table 6.

5 PID Control on VCM column
Industrial control applications frequently use PID: a feed-
back loop control scheme. A PID controller computes the

Table 5 Parameters of ANFIS structure for top composition and bottom

composition
Parameter Description
No. of input MF for top composition 8
No. of input MF for bottom composition 6
Input MF type Gaussian
Output MF type Linear
Epochs 30

Clustering method Subtractive clustering

Optimization method Hybrid algorithm

Table 6 Evaluation of top and bottom composition models on the basis

of RMSE
Testing Training
ANN-top 2.23E-2 4.30E-2
ANN-bot 4.33E-2 3.78E-2
ANFIS-top 1.08E-2 3.76E-2
ANFIS-bot 3.97E-2 2.48E-2

variation between the desired set-point and measured pro-
cess variable using derivative, integral, and proportional
actions. Based on this calculation, it produces an amended
control signal, u(¢). PID control design has been thoroughly
studied in the literature and has found beneficial applica-
tions in several fields. Its primary benefit and drawback
are regarded as being related to its simplicity, which limits
the breadth of operations it can effectively control [69].

In this study, two separate PID controllers are set up
for the top composition and bottom composition of an
industry-based vinyl chloride column. Both of the PID
controllers were tuned by MATLAB/Simulink software.
The values of the optimal gains of the PID controllers
ie., (Kp, K., K ) are listed in Table 7.

6 Results and discussion

The top composition and bottom compositions of the
VCM distillation unit are controlled by three different con-
trol strategies: PID, ANN, and ANFIS. The performance
of each controller is assessed through set-point tracking
and disturbance rejection tests.

6.1 Evaluation of the ANN and ANFIS-based Models

on the basis of set point tracking

The controllers' capability of tracking the new set point is
observed and compared by introducing a step change in the
set point. The performances are compared based on integral
square error (ISE) and integral time absolute error (ITAE).

Table 7 Parameters of PID controller for top and bottom composition

Parameter Kp K. K,
Top composition 20.56 0.01 25.2
Bottom composition 22.2 0.53 18.92




ISE refers to steady-state errors while ITAE reflects the con-
troller's ability to regulate its dynamic response properties.

Fig. 10(a) illustrates how well the three controllers,
i.e., PID, ANN, and ANFIS performed in following the
top composition's new set point when it was adjusted
from 0.94 to 0.99. However, the results clearly show that
in set point tracking, PID controllers exhibit significant
oscillations, prolonged settling times, and a slow response.
Since, ANN-based and ANFIS-based controllers hold
reduced rising time with zero offsets, they outperform PID
controllers with faster settling times.

Similarly, in Fig. 10(b), when the set point of the bottom
composition is changed from 0.02 to 0.01, the PID control-
ler shows a similar behavior with oscillations and over-
shoots. Both ANN and ANFIS show smooth tracking of
set points with faster responses. However, a slight under-
shoot is seen in ANN response before meeting the tar-
geted set point. No offset is observed in ANFIS response
as it directly meets the set point.

The performance indices are shown in Table 8. The error
values, ISE and ITAE, provide critical insights into the per-
formance of different controllers in tracking set points and
rejecting disturbances. ISE quantifies the sum of squared
deviations between the actual and desired outputs over
time, with lower values indicating greater control precision
and minimized oscillations. The ANFIS-based controller
demonstrates superior performance with the smallest ISE
values for both top composition (0.020) and bottom composi-
tion (0.013), highlighting its ability to achieve precise control.
Similarly, ITAE, which measures the time-weighted absolute
error, emphasizes long-term stability and rapid error correc-
tion [71]. The ANFIS controller achieves significantly lower
ITAE values for both top composition (0.132) and bottom
composition (0.56), reflecting its ability to stabilize quickly
and effectively manage transient responses. Compared to

a) 100
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Set point

ANN
ANFIS

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time (min)
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Table 8 Performance comparison of controllers based on ISE and ITAE
on set point basis

ANFIS ANN PID

Top composition
ISE 0.020 0.06 0.22
ITAE 0.132 0.78 243
Bottom composition
ISE 0.013 0.045 0.098
ITAE 0.56 0.96 5.67

the ANN-based controller, which performs moderately well
based on the values of ISE and ITAE in terms of tracking
the set point in comparison with PID in both top composition
and bottom composition. However, ANFIS shows the best
results with less value of ISE and ITAE.

6.2 Evaluation of the ANN and ANFIS based Models on
basis of disturbance rejection

To assess the system's robustness, stability, and perfor-
mance under external influences, a disturbance is intro-
duced assumed as an external disturbance caused by
some unknown sources, to deviate the controlled vari-
ables from their respective set points. Evaluation of con-
trollers is based on their capability to regain the set point
while handling the disturbances.

In Fig. 11(a), for top composition, there is an abrupt
and prolonged disturbance of 0.006 mol fraction, results
in deviation of set point from 0.990 to 0.996 at ¢ = 10 min.
The figure shows the initial response and stabilization of
the top composition to the set point over time. The ANFIS
line reaches the set point quickly with minimal overshoot,
ANN follows with a slightly slower response, and PID
shows the largest overshoot before stabilizing. Similarly,
in Fig. 11(b), a disturbance of 0.006 mol is introduced
at ¢t = 10 min which shifts the set point from 0.010 to 0.004.

b) 0.022

—— — Setpoint
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0.020 [~ ANFIS

PID

0.018

0.016

0.012

0.010 -
0.008 \/
0.006

0.004

I
oota| |
|
|

Bottom composition (xg)

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time(min)

Fig. 10 Performance of controllers (ANN, ANFIS & PID) on basis of set point tracking for (a) top composition and (b) bottom composition
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Fig. 11 Performance of controllers (ANN, ANFIS & PID) on basis of step disturbance for (a) top composition and (b) bottom composition

Similar behavior with initial deviations and eventual sta-
bilization is observed in the case of ANN and ANFIS
which appear to reach and maintain the set point faster
rejecting the disturbance. While the PID controllers expe-
rience significant overshoot and extended settling time.

For step disturbance rejection test, Table 9 shows the
performance indices of controllers based on the values of
ISE and ITAE. The values indicate that ANFIS with the
lowest value of errors, plays the best role in rejecting the
disturbance in uncertain environments when compared
with ANN and PID.

7 Simulink model of the process

The above results show the dominance of ANFIS-based
control over ANN-based control in the system. ANN-based
control model is further investigated based on loop gain,
peak gain, and stability by developing a Simulink-based
model. Fig. 12 shows a control system diagram for a VCM
distillation column, specifically to control the top and bot-
tom composition of the column. The diagram includes a
data sheet block of VCM column, a process model (DM),
a controller (PI & PID), and a neural network (NNET) con-
nected with distillation column block, with inputs repre-
senting the flow rate of the liquid and the vapor phases.
Process model block converts controller's output, which is

Table 9 Performance comparison of controllers based on ISE and ITAE

on step disturbance basis

ANFIS ANN PID

Top composition

ISE 4.34E-5 1.65E-4 2.98E-2

ITAE 0.036 1.03 345
Bottom composition

ISE 0.022 0.056 1.78

ITAE 0.86 2.12 7.54

predicted by NNET, as input to generate the top product
composition and bottom product compositions. The sys-
tem also includes a reference signal for the desired output.
The NNET is labeled as "I input - 1 hidden layer - 1 out-
putl". This suggests that the NNET is trained on data from
the system and used to predict future behavior.

The graph obtained from the above model is given in
Fig. 13. A plot of the minimum and maximum loop gains
for an open loop system is in the frequency domain, as
shown in Fig. 13(a). The green line represents the singular
value of the system at all frequencies, which is constant at
0 dB. The red line represents the target loop shape, which
is a straight line with a slope of -20 dB per decade. The blue
line shows the loop gains, with the solid line representing
the scaled loop gains and the dashed line representing the
loop gains themselves. The loop gains, within the spec-
ified tolerance are shown by the shaded area. The green
for the minimum loop gain, while the red represents the
maximum loop gain. Since, the loop gains are within the
specified tolerance over the entire frequency range, which
shows the system is stable and well-behaved.

The plot of overshoot as a peak gain constraint shows
the actual closed-loop gain is in allowable range lower
than the maximum allowed gain (15%) (Fig. 13(b)).
The graph is a measure of how much a system’s output
exceeds its desired value.

The four graphs illustrate the step disturbance rejection
of a system (see Fig. 13(c)). Each graph shows the response
of the system to a step disturbance (blue line) in compari-
son with the reference response (purple dashed line) with
two different input sources, dL and dV.

In Fig. 13(d) graph shows the stability margins of a sys-
tem at plant inputs. The top plot shows the gain margin in
decibels (dB) while bottom plot shows the phase margin in
degrees as a function of frequency. The stability margins
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are the minimum amount of gain or phase shift that can be
added to the system before it becomes unstable. The yel-
low shaded areas indicate the acceptable range for the sta-
bility margins. The plot shows that the system has a gain
margin of about 10 dB and a phase margin of about 90°.
These values indicate that the system is stable and has a
good amount of margin for stability.

Fig. 13(e) shows two graphs, one depicting gain margin
and the other showing phase margin at plant outputs. The gain
margin is relatively constant across the frequency range,
while the phase margin is a horizontal line at around 90°.

Fig. 14 shows performance parameter of ANN model
for training, validation, test, and all. The plots show the
model's predicted outputs versus the actual target values.
The plots include a line of best fit (labeled as "Fit") and
a diagonal line representing the ideal scenario where the
model predicts the target perfectly (labeled as "Y = 7).
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The R-squared values for each plot are given, indicating
how well the model fits the data. The higher the R-squared
value, the better the model's performance.

8 Conclusion

The paper presents the simulation-based study of the
industrial VCM column using aspen plus dynamics soft-
ware and the controllers. The performance of the con-
trollers is validated through set point tacking after being
tuned. The data generated from the simulation is pro-
cessed through the system identification toolbox, in which
the distillation column is identified as a nonlinear system
and shows the highest Fit% in NLARX model. The top
and bottom composition of the VCM column is con-
trolled using different control structures, i.e. PID, ANN,
and ANFIS. The performances of these controllers are
compared based on set point tracking and disturbance
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Fig. 14 Regression coefficient of ANN model



rejection. The results show PID controllers lag behind the
intelligent controllers due to their incapability to handle
nonlinear systems. However, the ANFIS-based controller
outreaches the responses of ANN-based controllers owing
to its ability to handle uncertainties as shown by the values
of ITAE, MSE and ISE. Further, ANN-based controllers
are investigated through a simulation model of the distil-
lation column on Simulink and are checked for stability,
overshoot, and gain values. Despite being stable and high
value of regression coefficient, the hybrid nature of ANFIS
allows it to manage nonlinearities and adapt more flexibly
to system dynamics, providing better overall control and
generalization compared to ANN. The work is beneficial in
terms of developing understanding of nonlinear Al- based
control of industrial VCM distillation column. However,
the current study can be extended in domain of fault detec-
tion and diagnosis (FDD), Uncertainty and Robustness
Analysis, Energy Optimization and Cost Analysis and
Generalization to Other Industrial Systems. Additionally,
the ANFIS model could be extended to multivariable con-
trol, managing multiple process variables like tempera-
ture, pressure, and flow rates simultaneously, thus improv-
ing robustness and adaptability. Beyond distillation, the
model could be applied to other complex chemical pro-
cesses such as reactors, crystallization, and extraction sys-
tems, showcasing its versatility. Future studies could also
investigate hybridizing ANFIS with machine learning
techniques like reinforcement learning or deep learning to
further enhance its predictive capabilities.
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Abbreviations
Al artificial intelligence
ANFIS artificial neural fuzzy inference system
ANN artificial neural network
APC advanced process control
ATV auto-tune variation
COA cuckoo optimization algorithm
EDC ethylene dichloride
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FIS fuzzy inference system

FLC fuzzy logic control

FORPID e i derivative T T
FOPTD first order plus time delay

FPE final prediction error

GA genetic algorithm

GMC generic model control

HCI hydrogen chloride

IMC internal model control

ISE integral square error

ITAE integral time absolute error

LC level controller

LLE liquid-liquid equilibrium

LM Levenberg-Marquardt

MF membership function

MIMO multiple-input-multiple-output
MISO multiple-input-single-output
MSE mean square error

NNET neural network

NLARX nonlinear autoregressive with exogenous

mputs

NNMPC non-linear model predictive control
NRTL nonrandom two-liquid

O/H overhead

PID proportional integral derivative
PI proportional integral

PVC poly vinyl chloride

RBF radial basis function

RMSE root mean square error

SVM support vector machine

TSK Takagi-Sugeno-Kang

VCM vinyl chloride monomer

VLE vapor-liquid equilibrium
Nomenclature

A, B membership function

dB decibels

F feed

f activation function

K proportional gain

P
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