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Abstract

Viscosity is an essential factor when selecting nanofluids, as it significantly impacts their thermal behavior and heat transfer 

characteristics. This study aims to develop a prediction model for the dynamic viscosity of damper oil (Grade: SAE10W) nanofluid 

containing graphene nanoplatelets (GnPs) using an artificial neural network (ANN) based on experimental data. With high precision, 

ANN accurately predicts the dynamic viscosity variations with nanoparticle volume concentration and temperature. The use of 

a network with one hidden layer and 10 neurons resulted in a regression coefficient of 0.9998, indicating high accuracy with a simple 

structure. Furthermore, a mathematical correlation derived using the curve fitting method resulted in a coefficient of determination 

value of 0.9990. These models were evaluated in terms of percentage error to determine their accuracy. The error range for the ANN 

model was between −0.89% and 0.66%, and for the mathematical correlation, it was between −6.74% and 5.27%. In comparison to the 

mathematical correlation, the ANN model predicts better the dynamic viscosity of GnPs-SAE10W oil nanofluids. Hence, this model has 

the potential in the development of applications related to heat transfer.
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1 Introduction
Heat transfer equipments are widely used in a variety of 
industrial and engineering applications. To enhance the 
efficiency of a heat transfer equipment, modifications 
are often necessary. Modifications can include changing 
the size of the equipment or improving the properties of 
the heat transfer fluids. Such modifications are essential 
for optimizing the heat transfer process, which in turn 
can lead to significant improvements in the overall per-
formance of the thermal systems. Also, the development 
of material science and technology is always introduc-
ing new concepts in the construction and working of heat 
transfer equipment. Such constant advancement makes it 
possible for modern heat transfer systems to be more effi-
cient, dependable, and capable of meeting the increasing 
needs of the various sectors. To meet industry demands for 
energy efficiency and sustainability, continuous improve-
ment in heat transfer equipment is necessary [1–3]. 
Minimalizing heat transfer equipment has its drawbacks, 
such as less space for installation and maintenance, higher 

prices, and smaller dimensions [4]. Hence, a detailed 
investigation of heat transfer fluids is necessary for cool-
ing and heating to improve the energy efficiency of ther-
mal systems. The heat transfer characteristics of a fluid 
are greatly affected by its dynamic viscosity ( µnf ) and 
thermal conductivity, which are major contributing fac-
tors [5, 6]. A low-viscosity fluid is ideal for pumping appli-
cations. Higher thermal conductivity also helps with faster 
heat transfer rates. A colloidal suspension of nanoparticles 
(less than 100 nm) in a base fluid, also known as nanofluid, 
enhances these properties [7]. The last several decades 
have seen a wide variety of applications for nanofluids. 
Fig. 1 illustrates the usage of nanofluids in different sec-
tors, such as energy, heat exchangers, heat transfer, medi-
cal, electronics, and military applications.

Choi and Eastman [8] demonstrated that the addi-
tion of nanoparticles can significantly improve the ther-
mal conductivity of conventional fluids. Many research-
ers are using this method to enhance the thermophysical 
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properties of base fluids. Carbon nanotubes and metallic 
or non-metallic oxide nanoparticles significantly enhance 
the thermophysical characteristics of heat transfer fluids, 
according to numerous studies [9].

However, several studies have shown that the disper-
sion of additives in fluids affects their viscosity. Variations 
in temperature (T) and volume concentration (φ) can influ-
ence the viscosity of nanofluids. Moreover, researchers 
have devised mathematical correlations based on exper-
imental studies to determine the thermophysical proper-
ties of nanofluids [10]. Dehghani et al. [11] conducted the 
experiments based on Al2O3 and WO3 nanoparticles using 
liquid paraffin and deionized water. The authors measured 
the µnf by varying T and mass fractions (MFs). Also, a cor-
relation was developed to predict the viscosity of the nano-
fluid with an average deviation of less than 10%. Hemmat 
Esfe [12] investigated the viscosity and shear stress of 
CuO/ethylene glycol (EG) nanofluids in a T range of 27.55 
to 50 °C, and φ ranging between 0% and 1.5%. 

Subsequently, a correlation was established with a 
4% error compared to the experimentally measured val-
ues. In another study [13], an experimental investigation 
was carried out on the µnf of multiwall carbon nanotubes 
(MWCNT)-Al2O3 (40:60)/Oil 5W50 hybrid nano-lubricant, 
and a correlation for prediction was then developed. Nguyen 
et al. [14] conducted experimental investigations and devel-
oped correlations for the viscosities of Al2O3, CuO, and 
water-based nanofluids. The study explored the impact of 
both T and particle size on these viscosities. Aberoumand 
et al. [15] conducted an investigation into the viscosity and 

thermal conductivity of a silver nanofluid in an oil-based 
fluid, studying the variations as a function of nanoparticle 
φ. Wang et al. [16] investigated the thermophysical proper-
ties of GnPs/water nanofluids and developed a correlation 
to predict the viscosity accurately. They achieved a high 
level of accuracy with a coefficient of determination (R2) 
value of 0.99. Soltani and Akbari [17] investigated the µnf 
of MgO-MWCNT/EG hybrid nanofluids, considering the 
influence of T and φ. A novel correlation was developed 
to predict the µnf of these nanofluids. Manikandan and 
Nanthakumar [18] investigated and developed a mathe-
matical model for predicting the thermophysical properties 
of Cu/damper oil nanofluids, with a margin of deviation 
(MOD) ranging from −3.7 to 7%. The summary of research 
studies related to the correlation developed for predicting 
µnf is presented in Table 1 [11, 12, 14–17].

Mathematical correlations can be derived using exper-
imental data through fitting and regression analysis, but 
they are not always reliable predictors [19]. To achieve 
precise predictions, researchers have turned to machine 
learning techniques to predict the thermophysical prop-
erties of nanofluids [20–22]. An artificial neural networks 
(ANN) model was developed to forecast the viscosity of 
MWCNT-MgO/SAE40 nano lubricants from experimen-
tal datasets. The ANN model exhibits a regression coef-
ficient (R) of 0.9999 and a mean square error of 0.00145. 
The MOD of the ANN model falls within the range of 
±1% [23]. In another study [24], an ANN model was devel-
oped to predict the viscosity of MWCNT-CuO/Oil 10W40 
nano lubricants. The ANN model has MOD for all data 
and test data that falls within less than 15% range.

Chu et al. [25] conducted experiments and RSM/ANN 
models were used to investigate the rheological behavior 
of hybrid nanofluids for MWCNT-TiO2/5W40. The ANN 
model demonstrated superior accuracy in predictions 
compared to the mathematical model, with an observed 
maximum error below 5% and an R2 value of 0.999. Bhat 
and Qayoum [26] investigated the viscosity of CuO/EG 
nanofluids by considering their size, φ, and T. They uti-
lized an ANN model to forecast the effective viscosity 
and compared the correlation. Although the proposed cor-
relation exhibited R2 values of 0.95 and 0.90 for the cor-
relation and ANN models, respectively, it was found to 
be less effective than ANN modeling in predicting effec-
tive viscosity. Fan et al. [27] predicted the µnf of the WO3-
MWCNT/water-EG hybrid nanofluids using ANN model. 
The findings reveal that a well-trained ANN is generated 
using the trainlm method, with a mean square error (MSE) 

Fig. 1 Applications of nanofluids
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value of 0.00042 and an R2 of 0.998 for predicting µnf of 
the nanofluids. Hence, numerous researchers have con-
cluded that ANN demonstrate greater accuracy in pre-
dicting nanofluid properties. According to literature stud-
ies, the most viscosity models are available in water and 
EG-based nanofluids. However, only a handful of stud-
ies have focused on oil-based nanofluids and developed 
prediction models. Further research is needed to explore 
the behavior of oil-based nanofluids and to develop more 
accurate models for predicting their viscosity. 

This research aims to develop a model that can pre-
dict the viscosity of GnPs-SAE10W oil nanofluid using 
ANN and a curve-fitting method. The investigation exam-
ines various neural network structures and mathematical 

correlations, including the incorporation of nanoparticles 
φ and T. Additionally, various graphs present a compar-
ison between experimental data and modeling results. 
It is expected that this analysis will aid in a more compre-
hensive understanding of oil-based nanofluids' potential 
industrial applications for heat transfer process. 

2 Materials and methods
2.1 Experimental data collection
In this research, investigations were carried out using 
graphene nanoplatelets (GnPs) incorporated into an auto-
motive damper oil (India Yamaha Motor PVT. Ltd, grade: 
SAE10W). The grade 4O+ GnPs purchased from Cheap 
Tubes Inc (USA) are supplied in nanosheet form with a 

Table 1 The summary of research studies related to the correlation developed for predicting viscosity of nanofluids*

Authors Nanoparticles Base fluid Concentration
(%)

Temperature
(°C) Correlation

Dehghani et al. [11] Al2O3-WO3
Deionized water 

and liquid paraffin
0.1, 0.5, 1, and 

5 wt%
5, 25, 45, 
and 65 °C

For aqueous nanofluid
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where, B1 = −1.228, B2 = −3.027, B3 = 0.575, 
B4 = 6.256, a = −0.206, b = 0.130, c = 0.192.
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where, A1 = −32.072, A2 = −6.191, A3 = 12.895, 
A4 = 116.64, á = 0.136, b́ = 0.513, ć = 0.346.
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Hemmat Esfe [12] CuO Ethylene glycol 0–1.5 vol% 27.5–50 °C
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where, coefficients at 30 °C, a0 = 0.9876 
a1 = 0.8065, a2 = 3.148, a3 = −3.418, a4 = 1.268

Nguyen et al. [14] Al2O3, CuO Water <4 vol% 27–75 °C
µ
µ
nf

b

� � � � � � �1 475 0 319 0 051 0 009
2 3

. . . .� � �  

Aberoumand et al. [15] Ag Oil 0.12–0.72 vol% 25–60 °C
µ
µ
nf

b
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2 3

. . . .� � �  

Wang et al. [16] GnP Water 1 wt% – µ
T
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Soltani and Akbari [17] MgO-MWCNT Ethylene glycol 0–1.0% 30 °C–60 °C
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* µnf: Dynamic viscosity of nanofluid (Pa·s), µb: Dynamic viscosity of basefluid (Pa·s), λ,λ': nanoparticles and basefluid physical properties, 
T: Temperature (°C), w: Mass (%), Mwnp: Molecular weight of nanoparticle (g·mol−1), Mwbf: Molecular weight of basefluid (g·mol−1), ρnp: Density of 
nanopartilcle (g·cm−3), φ: Volume concentration (%), MF: Mass fraction (%)
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specific surface area of 700 m2/g, a thickness of 4 nm, and 
lateral dimensions of 2 µm. The GnPs dry powder is black 
color and 99% purity. A two-step process [28] was fol-
lowed to meticulously prepare the nanofluids, with varying 
nanoparticle φ ranging from 0.050% to 0.150%. Accurate 
and systematic experimental measurements were carried 
out in accordance with ASTM D445-24 [29] standard, and 
the kinematic viscosity of the prepared nanofluids was mea-
sured utilizing a Cannon-Fenske Routine Viscometer with 
a precision level of ±0.2%. Measurements were made to 
determine the kinematic viscosity of the nanofluid at T 
between 20 °C to 80 °C with intervals of 10 °C. The µnf 
was calculated by multiplying the obtained kinematic vis-
cosity values by the density of the nanofluid. The experi-
mental dataset that corresponds to the µnf of GnPs/SAE10W 
oil nanofluids is presented in Table 2. 

2.2 Modeling with ANN
The popularity of ANN has increased over the past few 
years because of their efficiency in modeling complex 

relationships and making accurate predictions [30, 31]. 
ANN are computational models that are inspired by the 
structure and function of the human brain, allowing them 
to learn and generalize from data [32]. There are three lay-
ers in the ANN architecture. The initial layer acts as the 
input layer, transmitting information to the following layer, 
which is referred to as the hidden layer. The third layer is 
responsible for producing output. The inputs to the network 
include φ and T (input data), while the output is the pre-
dicted µnf (target data). The neurons within all layers estab-
lish connections through weight coefficients ( wij ). Each 
neuron takes these weight coefficients, multiplies them by 
the corresponding input received, and aggregates them to 
generate the output, as depicted in Fig. 2. The processing 
progresses until the discrepancy between successive output 
datasets is minimized. This convergence can be described 
in Eq. (1) [33] with parameters inherent to characterizing 
ANN, including weights ( wij ), biases ( bi ), and an activation 
function (f). The output layer receives the purelin activa-
tion function, along with the tansigmoid. The Levenberg-
Marquardt (trainlm) learning algorithm is employed in the 
modeling process using the nntool in MATLAB.

y f w x bj ij i
i

n

i� ��

�
�

�

�
�

�
�

1

 (1)

Where yi represents the output, xi is the input, and n means 
the number of neurons, wij , and bi are the weight coeffi-
cients and bias, respectively. 

The modeling process is divided into three stages: 
training, which takes in 70% of the experimental data, 
testing, which takes in 15% of the experimental data, and 

Table 2 µnf of GnPs/SAE10W oil nanofluids (mPa∙s)

T (°C)
φ (%)

0.05 0.075 0.1 0.125 0.15

20 47.75 47.41 47.14 46.23 45.65

30 37.89 37.46 37.07 36.56 36.20

40 30.28 29.68 29.09 28.91 28.62

50 20.98 20.59 20.22 20.15 20.01

60 12.92 12.77 12.67 12.56 12.51

70 8.79 8.55 8.32 8.26 8.15

80 4.86 4.74 4.60 4.37 4.15

Fig. 2 ANN architecture for predicting µnf of nanofluid
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validation, which takes in another 15% [34]. The ANN 
model performance is evaluated based on metrics such 
as the MSE and R. For the model to be accurate, the R 
value should be closer to 1, and the MSE should be mini-
mized as much as possible. The dataset utilized for train-
ing, testing, and validation comprises 35 data points from 
experimental datasets. Fig. 3, illustrates the flowchart of 
the ANN modeling process. 

The outputs are generated using input data and weights, 
followed by a check for accuracy. The modeling process is 
complete if the outputs meet the required accuracy crite-
ria. However, if the modeling accuracy is deemed insuf-
ficient, adjustments are made to the neurons in the hid-
den layer, and a similar iterative process is undertaken. 
The optimal network size is determined by heuristics 
involving the number of neurons. 

3 Result and discussion
The performance of the ANN improves when the num-
ber of neurons in the hidden layer is varied, as shown 
in Table 3. The number of neurons has an impact on the 
performance of the ANN structure. The optimal ANN is 
chosen by evaluating the performance of various network 
structures to improve the network's precision in data esti-
mation. As previously stated, the ANN architecture for 
modeling µnf data was chosen by analyzing MSE and R 
values. The ANN were trained using a hidden layer that 
contained up to 15 neurons. The optimal architecture cho-
sen a network with hidden layer of 10 neurons. The fluc-
tuation of MSE values across training, validation, and test 
data iterations is depicted in Fig. 4. The X-axis represents 
that the MSE values and Y-axis denotes number of epochs. 
In this training process, an epoch represents one complete 
iteration of the entire training dataset. It includes updat-
ing the model's weights, processing the data in batches, 
and carrying out both forward and backward propagation. 
The number of epochs required for training depends on 
the complexity of the model and the size of the dataset. It is 
important to monitor metrics such as loss and accuracy to 
determine when to stop training. At the start, MSE has 
a high value, but it gradually diminishes with the increase 
in epochs. The validation process is ended when the MSE 
value goes up after a certain number of iterations, indicat-
ing that the results were unsuccessful. After determining 
the best outcome, it is presented as an output. In Fig. 4, 
training stops at 87 epochs when the MSE value reaches 
approximately 0.0052691. In Fig. 5, the experimental 

results of µnf for nanofluid are depicted across various φ 
and T. This is compared with the predicted data from the 
ANN training, validation, and testing phases. Also, illus-
trates a strong agreement between experimental data and 
the predictions made by the ANN. The results indicate 
precise training of the ANN, affirming its capability for 

Fig. 3 ANN modeling flowchart
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accurately predicting the µnf of nanofluid. The R, repre-
senting the correlation between the network ANN predic-
tion data and experimental data, is crucial. An ideal value 
for high quality must be greater than 0.9 [35]. According 
to the results presented, the R for all components of the 
ANN is approximately 1.

The error histogram in Fig. 6 illustrates the disparity 
between predicted and experimental data after training 
with 20 bins on the X-axis. Training, validation, and testing 
data are represented by blue, green, and red bars, respec-
tively. It is 0.00156 at a zero-line error, encompassing 
a range of errors from −0.3966 to 0.1808. The Y-axis (ver-
tical bars) indicates the number of samples, and a zero-er-
ror line indicates the precision. Notably, many datasets are 
close to the zero line, suggesting that the trained model 
can effectively predict output.

The relationship between input variables (φ and T) and 
response variables ( µnf ) is illustrated in Fig. 7, through 
a three-dimensional surface fit. The surface response 
can fit all experimental data points. Furthermore, there 
are noticeable variations in µnf as a result of changes in 
both φ and T. 

A mathematical correlation has been developed to deter-
mine the µnf of GnPs-SAE10W oil nanofluids, and Eq. (2) 
has been formulated in terms of nanoparticle φ and T. 

µ a b c T d e T f T g T

h T i T
nf � � � � � � � � � � � � � �

� � � � �

�� � � �

�

2 2 2

2 3
 (2)

This correlation is obtained through curve fitting 
method (surface fit) and demonstrates satisfactory accu-
racy. The correlation coefficients for Eq. (2) are presented 
in Table 4. The goodness of fit for this correlation is 
shown in Table 5.

The deviation between experimental and predicted val-
ues is evaluated using a percentage error concept based on 
the results of ANN and correlations. This percentage of 
error is calculated using the following Eq. (3) [18].

Error
Experimental Predicted

Experimental
%� � �

� � � � �� �µ µ

µ
nf nf

nf�� �
�

�
�
�

�

�
�
�
�100  

(3)

The error percentages for both ANN and correlation 
predicted data are shown in Fig. 8. An ANN model have 
an error percentage that is between −0.89 and 0.66, while 
correlation error percentages are between −6.74 and 5.27. 

The error percentage for ANN shows that they are more 
accurate in predicting the µnf of nanofluids than correlation.

Fig. 4 µnf prediction using ANN model - MSE plot

Table 3 The ANN performance results with different neuron numbers for predicting µnf

Neuron number
MSE R

Train Validation Test Train Validation Test Overall

5 0.0446 0.0234 0.0667 0.99991 0.99993 0.99982 0.99989

6 0.00325 0.0616 0.016 0.99999 0.99999 0.99994 0.99997

7 0.00727 0.0212 0.0214 0.99998 0.99997 0.99998 0.99998

8 0.000162 0.0204 0.0706 1 0.99988 0.99987 0.99997

9 0.000519 0.0364 0.0257 0.99998 0.99997 0.99998 0.99998

10 0.0000454 0.00527 0.0486 1 1 0.99988 0.99998

11 0.000857 0.0938 0.103 0.99985 0.99982 0.99981 0.99982

12 0.00609 0.0916 0.205 0.99999 0.99988 0.99924 0.9999

13 0.00103 0.455 0.389 1 0.99963 0.9996 0.99974

14 0.000919 0.0445 0.0925 1 0.99995 0.99997 0.99996

15 0.00416 0.99 0.269 0.99999 0.99703 0.99919 0.99958
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Fig. 5 The correlation coefficient and regression diagram for µnf prediction in GnPs-SAE10W oil nanofluids

Fig. 6 The ANN error histograms for predicting µnf
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Table 4 Coefficients of correlation

Coefficients Value

a 66.8761

b 29.8290

c 0.8154

d 32.9258

e 0.5921

f 0.0059

g 1.0158

h 0.0052

i 0.0001

Table 5 The goodness of fit for correlation

Sum of squared 
errors (SSE) R2 Adjusted 

R2
Root mean squared error 

(RMSE)

7.5855 0.9990 0.9987 0.5401

Fig. 8 Error percentages for ANN and correlation data

Fig. 7 The 3D surface fitted graph for experimental µnf of the GnPs/SAE10W oil nanofluids

In Fig. 9, it is shown that the predicted and experimen-
tal µnf of the GnPs-SAE10W oil nanofluid are compared. 
The plots demonstrate a clear compatibility between the 
µnf predicted by ANN and the experimentally determined 
values. This agreement is significantly more prominent 
than the µnf predicted by correlation methods.
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Fig. 9 Comparison between experimental data, ANN, and correlation data
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