Periodica Polytechnica Chemical Engineering, 68(4), pp. 552–560, 2024

Efficient Catalytic Hydrocracking of Crude Palm Oil Over EDTA Template-assisted SiO2-Al2O3/NiMo Catalysts

Zainal Fanani', Wan Ryan Asri², Betty Dwiyanti', Nino Rinaldi³, Roni Maryana³, Muhammad Al Muttaqii³, Fahma Riyanti¹, Ady Mara¹, Rahadian Zainul⁴, Hasanudin Hasanudin^{1*}

⁴ Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, Jl. Prof. Dr. Hamka 1., 25171 Padang, Indonesia

* Corresponding author, e-mail: hasanudin@mipa.unsri.ac.id

Received: 22 April 2024, Accepted: 21 August 2024, Published online: 10 October 2024

Abstract

The development of hydrocracking catalysts for crude palm oil (CPO) is a challenging process due to its limited textural or pore accessibility and low acidity properties. Therefore, this study aims to develop a series of SiO_2 -Al₂O₃-x/NiMo catalysts using different Al mass (*x* = 5, 10, 25 g) assisted with EDTA to enhance their physicochemical properties. During the procedures, bimetallic NiMo species were dispersed into SiO₃-Al₂O₃-x using the wet impregnation method. The structural, textural, surface morphology, particle size distribution, and acidity properties of the products were then assessed. Catalytic activity of catalysts on hydrocracking of CPO was evaluated at 350 °C for 2 h, H₂ gas pressure of 20 bar, and mixed at 1500 rpm. The results showed that increasing Al mass caused an increment in the total acidity, acid site density, and surface area of SiO₂-Al₂O₃-x. In addition, SiO₂-Al₂O₃-25 provided better support properties, allowing preferable NiMo dispersion. Hydrocracking assessment showed that CPO conversion was increased at higher Al mass, producing the highest bio-aviation and biogasoline fractions yield. Based on these results, SiO₃-Al₂O₃-x/NiMo successfully enhanced CPO conversion of unloaded SiO₂-Al₂O₃-x, as well as increased the yield of bio-aviation and biogasoline fractions.

Keywords

catalytic hydrocracking, NiMo, SiO₂-Al₂O₂, crude palm oil, bimetallic catalyst

1 Introduction

The growing need for energy and the decreasing supply of conventional fuel are major factors facilitating the development of cleaner and sustainable energy [1]. Consequently, biofuel production from renewable resources has received significant attention in recent years. This is primarily due to its ability to compensate for the decreasing supply of fossil fuels, lower carbon footprint, as well as enhance economic growth and sustainability [2]. Biofuel production is often carried out using crude palm oil (CPO) and its derivatives as biomass due to their low cost and high output per hectare relative to other vegetable oils in Southeast Asia [3]. At present, the most prevalent method for this process is triglyceride hydroprocessing, which comprises the use of high temperature and pressure with different catalysts [4]. Triglyceride hydroprocessing typically consists

of several steps, including hydrogenation and cracking. Hydrogenation often begins by transforming unsaturated fatty acids into saturated acids, followed by breaking fatty acids into short-chain hydrocarbons through complex chemical processes, such as hydrodeoxygenation, decarboxylation, and decarboxylation [5]. Meanwhile, hydrocracking converts CPO into hydrocarbons, which is an alternate method for producing low S and N hydrocarbons.

Several studies have shown that the types of catalysts significantly impact the efficiency of hydrocracking. Various types, such as HZSM-5 and HY zeolites [6], Zn-Mo/HZSM-5 [7], Ni/zeolite [8], ZSM5 zeolite [9], $Mo/SiO₂$ [10], $SiO₂/ZrN$ [11], NiO-CdO/biochar [12], Ni-Mo/alumina [13], Ni–W/SiO₂–Al₂O₃ [14], and NiMoW-ZSM-5/MCM-41 [15], have been used for vegetable

Cite this article as: Fanani, Z., Asri, W. R., Dwiyanti, B., Rinaldi, N., Maryana, R., Al Muttaqii, M., Riyanti, F., Mara, A., Zainul, R., Hasanudin, H. "Efficient Catalytic Hydrocracking of Crude Palm Oil Over EDTA Template-assisted SiO₂-Al,O₃/NiMo Catalysts", Periodica Polytechnica Chemical Engineering, 68(4), pp. 552–560, 2024. <https://doi.org/10.3311/PPch.37159>

¹ Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Jl. Palembang-Prabumulih Km. 35., 30662 Indralaya, Sumatra Selatan, Indonesia

² Chemistry Department, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia

³ Research Center for Chemistry, Indonesian Institute of Sciences, Building 452 Kawasan PUSPIPTEK, Serpong, 15314 Tangerang Selatan, Banten, Indonesia

oil-based hydrocracking. Despite the potential, noble monometal-based catalysts are less effective due to the ease of deactivation by sintering active metal species and coke deposits, leading to unstable and poor catalytic activity [16]. This has led to the use of bifunctional catalysts, which often comprise both metal and acid sites. The materials also have hydrogenation sites that can supply hydrogen for hydrogenation processes and surface hydrogenolysis [17]. Although noble metal-based catalysts perform better in hydrocracking, their high costs can diminish economic viability, necessitating the consideration of alternatives [16]. Among the transition metals, Ni and Mo are commonly used in hydrocracking reactions and have shown exceptional catalytic activity [18].

Various types of catalysts using NiMo as active metals have been prepared with different supports [19–24]. In this context, alumina and silica are the most frequently used mesoporous oxide supports due to their tunable acidity and excellent stability [25, 26]. SiO_2 - Al_2O_3 mixed oxides are prominent supports that offer various benefits during hydrocracking process. This material has adequate pore diameter to promote metal deposition and pore diffusion, optimal active metal dispersion, and appropriate acidity to break down larger molecules while reducing coke formation. SiO_2 -Al₂O₃ oxides can also be modified to provide the desired acidity and textural characteristics [27, 28]. According to a previous study [11], the use of ethylenediaminetetraacetic acid (EDTA) as a template method successfully enhanced the acidity, metal dispersion, and textural features of SiO₂/Zr-based catalysts, providing better catalytic hydrocracking performance. Therefore, this study aims to develop mesoporous SiO_2 -Al₂O₃/NiMo catalysts with different Al mass using EDTA as a template agent to enhance their physicochemical properties. Dispersing NiMo into SiO_2 - Al_2O_3 supports is expected to enhance the intrinsic performance of CPO hydrocracking towards high conversion.

2 Materials and methods

2.1 Preparation of $\text{SiO}_2\text{-} \text{Al}_2\text{O}_3$

 SiO_2 -Al₂O₃ was prepared using the sol-gel method with different Al mass (5, 10, 25 g with Si:Al ratio 1:0.02, 1:0.05, 1:0.15, respectively) and assisted with EDTA as a template. All chemicals for catalyst preparation were purchased from Sigma-Aldrich and used without further purification. A total of 25 g of disodium salt of EDTA $(C_{10}H_{14}N_2Na_2O_8.2H_2O, 99.0–101.0%$ purity) was dissolved in demineralized water (500 mL) and stirred, thus

forming 5% of EDTA solution. Subsequently, 5 g of aluminum nitrate nonahydrate salts $(AI(NO₃)₃·9H₂O, \geq 98.5\%$ purity) were dissolved in 100 mL of as-prepared EDTA solution and stirred at room temperature, and were later mixed with 100 mL of tetraethyl orthosilicate $(Si(OC₂H₅)₄$, \geq 99.0%) and 200 mL of ethanol (CH₃OH, \geq 99.5 purity) and stirred for 15 min at room temperature. Furthermore, the ammonia solution (NH₄OH, 25% purity) was gradually dripped into the latter solution until it became a gel, which was agitated for 30 min and subsequently stirred and heated up to 50 °C until forming a paste. The paste was dried at 100 °C for 24 h and calcined at 750 °C for 6 h. Its powder (120 mesh) was denoted as SiO_2 -Al₂O₃-5. Further catalysts with different Al mass (10 and 25 g) was prepared with the same procedures and were denoted as SiO_2 -Al₂O₃-10 and SiO_2 -Al₂O₃-25, respectively.

2.2 Preparation of SiO₂-Al₂O₃/NiMo

 SiO_2 -Al₂O₃/NiMo was prepared using the wet-impregnation method. Typically, 5.06 g of nickel(II) chloride hexahydrate salt (NiCl₂⋅6H₂O, 99.9% purity) was dissolved in 100 mL of demineralized water and stirred at room temperature. A total of 5.26 g of ammonium molybdate $((NH_4)$ ₂MoO₄, purity 99.98%) was dissolved in 100 mL of demineralized water and mixed with the latter solution, forming NiMo precursors solution (molar ratio = 1:1). Furthermore, 25 g of SiO_2 -Al₂O₃ was dispersed in the NiMo solution and stirred, gradually increasing the temperature to 80 °C until forming a paste, which was dried in the oven at $100-110$ °C, calcined at 750 °C for 6 h, and at 350 °C for 2 h. The powder was denoted as SiO_2 - Al_2O_3 -x/ NiMo, where x was the mass of Al.

2.3 Hydrocracking of CPO

In this procedure, 0.6 g of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/ NiMo series catalysts and 20 g of CPO were used for hydrocracking and before hydrocracking, the reactor was purged 3 times with H_2 gas (20 bar). Hydrocracking was conducted at 350 °C for 2 h uder stirring with 1500 rpm. The liquid product was analyzed by the GC-MS. The triglycerides were denoted as TGs, whereas the biofuel yield (Y_x) and conversion (C_x) were calculated according to Eqs. $((1)–(2))$:

$$
Y_x = \frac{\% \text{ area of biofuel in GC-MS}}{\text{TGs in reactant} - \text{TGs in product}} \times 100\%,\tag{1}
$$

$$
C_x = \frac{\text{TGs in reactant} - \text{TGs in product}}{\text{TGs in reactant}} \times 100\%.\tag{2}
$$

2.4 Characterization of catalysts

Powder X-ray diffraction (XRD, Rigaku SmartLab) was used to analyze the phase structure of the catalysts, and FTIR spectrophotometer (Bruker Tensor II) was used to evaluate the functional groups of the catalysts. SEM-EDX mapping (Hitachi SU3500) was used to capture the surface morphology of the catalysts and their elemental constituents. The average particle size and its distribution were calculated on a micro-scale using a particle size analyzer (Horiba LA-960). Furthermore, the N_2 adsorption-desorption was recorded by a surface area analyzer (TriStar II 3020 , Micromeritics). The sample (0.3 g) was degassed at 300 °C for 3 h, with bath temperature of −195.85 °C and equilibration Interval of 5 s. The weight of the degassed sample was utilized in calculations.

 The surface area was calculated using the multi-point Brunauer–Emmett–Teller method (BET), while the pore features were extracted using Barrett-Joyner-Halenda (BJH) method. The total acidity was measured using an NH₃-TPD (AutoChem II 2920, Micromeritics). The sample was degassed at 350 °C for 1 h and flowed with He gas. Subsequently, the temperature was increased gradually up to 500 °C for 30 min.

3 Results and discussion

3.1 Catalyst characterization

The XRD diffractograms of SiO_2 -Al₂O₃-x and SiO_2 - Al_2O_3 -x/NiMo where x is the mass of Al (5, 10, 25 g) were presented in Fig. 1. The parent SiO_2 - Al_2O_3 -5 showed a wide diffraction peak at 2θ ca. 21°, suggesting the formation of amorphous silica structure [29]. The diffraction peaks appeared at $2\theta = 27.46^{\circ}$, 31.17°, 35.85°, and 46.82°, confirming the γ -Al₂O₃ phase [30]. The broadened peak ($2\theta = 21^\circ$) upon higher Al mass (SiO_2 -Al₂O₃-10

Fig. 1 XRD diffractograms of parent SiO_2 -Al₂O₃ and SiO_2 -Al₂O₃/NiMo catalysts with different Al masses

and SiO_2 -Al₂O₃-25) showed a robust interaction between SiO₂ and Al₂O₃ [31]. The intensity of the *γ*-Al₂O₃ phase in SiO_2 -Al₂O₃-10 significantly decreased and tended to disappear in SiO_2 -Al₂O₃-25, implying that higher mass of Al decreased the crystallinity and promoted the formation of amorphous SiO_2 -Al₂O₃ support. The SiO_2 -Al₂O₃-5/NiMo catalyst exhibited a diffraction peak at 2θ 14.27°, 23.98°, 25.32°, 28.24°, 32.60°, and 48.32° corresponding to the presence of crystalline $MoO₂[32]$. The monoclinic phase of the nickel molybdenum could be confirmed by the diffraction peaks at 2θ 25.97°, 26.77°, 27.4°, and 32.87° [33], while the diffraction peaks at 2θ 38.69°, 43.85°, and 61.75° were attributed to the nickel oxide phase [34]. The intensity of sharp peaks of metallic phases was much higher in the order of SiO_2 -Al₂O₃-5/NiMo > SiO_2 -Al₂O₃-10/ $NiMo > SiO₂-Al₂O₃-25/NiMo$ catalysts, which showed the presence of larger NiMo crystallite and poor dispersion in the support [35]. This result suggested that SiO_2 -Al₂O₃-25 promoted better the bimetal dispersion than its counterparts. However, the diffraction intensity of silica $(SiO_2-Al_2O_3-5$ NiMo) increased upon NiMo loading owing to the interaction of the bimetallic species with the silica, which influenced the regularity of the SiO_2 -Al₂O₃ framework.

Fig. 2 presented FTIR spectra of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/NiMo. The absorption bands at 805 cm⁻¹ and $1066-1198$ cm⁻¹ in SiO₂-Al₂O₃-5 corresponded to the linkage vibration of Si-O-Al and the stretching vibration of Si-O-Si of the condensed silica-alumina framework formation, respectively [11, 36], and indeed had similar absorption bands characteristics to its counterparts. However, the shift upon higher Al mass in the silica bond

Fig. 2 FTIR spectra of parent SiO_2 - Al_2O_3 and SiO_2 - $Al_2O_3/NiMo$ catalysts with different Al masses

 $(SiO₂-Al₂O₃-10$ and $SiO₂-Al₂O₃-25)$ presumably showed the increase of Si–O–Al hetero-linkages population in catalysts [37]. The absorption bands at $620-703$ cm⁻¹ in SiO_2 -Al₂O₃-5/NiMo were ascribed to the Mo–O–Mo and Mo=O vibrations [22], while the absorption bands at 932–962 cm^{-1} were attributed to the Ni-O vibration. Similar absorption bands were also observed in SiO_2 - Al_2O_3 -10/NiMo with no appreciable changes. These absorption bands of the metals, however, tended to diminish in SiO_2 -Al₂O₃-25/NiMo, suggesting a better interaction between the bimetallic species and the support, which was consistent with the XRD results. Moreover, the Si-O-Al absorption band in SiO_2 -Al₂O₃-x/NiMo were slightly shifted to lower wavenumbers (ca. 795 cm^{-1}) and had higher intensity with respect to the parent catalysts, suggesting that the bimetalic species were incorporated into the framework of catalysts support [29].

Fig. 3 showed the SEM micrographs of unloaded SiO_2 - Al_2O_3 -x and SiO₂-Al₂O₃-x/NiMo. SiO₂-Al₂O₃-5 (Fig. 3 (a)) exhibited aggregated particles with irregular shapes, suggesting an amorphous nature [38]. Similar surface morphology features were also noticed in both $SiO_2Al_2O_3$ -10 and $SiO_2Al_2O_3$ -25 (Fig. 3 (b)–(c)). A change in surface morphology features was observed upon NiMo loading (Fig. 3 (d)–(f)), showing that changing the Al mass in the support could affect the surface morphology of the $\rm SiO_{2}$ -Al₂O₃-x/NiMo catalysts. Different Al mass in the support presumably reorganizes the arrangement of the particles within the surface, hence resulting in different morphologies upon NiMo loading.

Fig. 4 presented the EDX mapping of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/NiMo. SiO_2 -SiO₂-Al₂O₃-5 (Fig. 4 (a)) showed Si and Al elements, confirming the formation of SiO_2 -Al₂O₃, which was similar to SiO_2 -Al₂O₃-10 and SiO_2 -Al₂O₃-25 (Fig. 4 (b)–(c)) with increasing Al elements intensity upon higher Al mass. Ni and Mo element with homogenous distribution

Fig. 3 SEM micrographs of (a) SiO_2 -Al₂O₃-5; (b) SiO_2 -Al₂O₃-10; (c) SiO_2 -Al₂O₃-25; (d) SiO_2 -Al₂O₃-5/NiMo; (e) SiO_2 -Al₂O₃-5/NiMo; (f) SiO_2 -Al₂O₃-5/NiMo

Fig. 4 SEM-EDX mapping of (a) SiO_2 -Al₂O₃-5; (b) SiO_2 -Al₂O₃-10; (c) SiO_2 -Al₂O₃-25; (d) SiO_2 -Al₂O₃-5/NiMo; (e) SiO_2 -Al₂O₃-5/NiMo; (f) SiO_2 -Al₂O₃-5/NiMo

appeared in SiO_2 -Al₂O₃-x/NiMo (Fig. 4 (d)–(f)), showing that the NiMo species were successfully loaded onto the support. Fig. 4 showed that SiO_2 - Al_2O_3 -25/NiMo had more profound Ni and Mo intensity compared to its counterparts, suggesting an enhancement in the bimetal dispersion, corroborating the XRD and FTIR results.

The particle size distribution of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/NiMo was presented in Fig. 5, while the average particle size of catalysts was shown in Table 1. SiO_2 -Al₂O₃-5 had a narrow particle size distribution with an average particle size of 5.63 ± 0.02 µm. This size

Fig. 5 The particle size distribution of SiO_2 - Al_2O_3 -x and SiO_2 -Al₂O₃-x/NiMo catalysts

Table 1 The average particle size of SiO_2 - Al_2O_3 -x and of

SiO_{2} -Al ₂ O ₂ -x/NiMo catalysts			
Catalysts	Average particle size (μm)		
SiO_{2} -Al ₂ O ₃ -5	5.63 ± 0.02		
$SiO, -Al, O, -10$	16.88 ± 0.06		
$SiO, -Al, O, -25$	9.78 ± 0.02		
$SiO, -Al, O, -5/NiMo$	7.48 ± 0.02		
$SiO, -Al, O, -10/NiMo$	5.45 ± 0.02		
$SiO, -Al, O, -25/NiMo$	6.26 ± 0.02		

distribution became wider with increasing average particle size 16.88 ± 0.06 µm in SiO₂-Al₂O₃-10, suggesting a non-uniform particle size distribution. The particle size distribution tended to narrow upon higher Al mass $(SiO₂-Al₂O₃-25)$ and to decrease its average particle size to 9.78 ± 0.02 µm. SiO_2 -Al₂O₃-5/NiMo showed a higher average particle size $(7.48 \pm 0.02 \mu m)$ that slightly shifted towards higher particle diameter distribution for its parent catalysts, presumably owing to NiMo agglomeration. Meanwhile, SiO_2 -Al₂O₃-10/ NiMo and SiO_2 -Al₂O₃-25/NiMo had narrow particle size distribution and a decrease in the average particle size $(5.45 \pm 0.02$ and 6.26 ± 0.02 µm, respectively) compared to unloaded SiO_2 -Al₂O₃, showing that increasing the Al weights prominently promoted better homogeneity of the particles hence providing good dispersion.

Fig. 6 showed the N_2 adsorption-desorption of isotherms SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/NiMo. However, it appeared that all catalysts possessed type IV isotherm, showing mesoporous materials [39]. The presence of mesopores allowed an efficient movement of large molecules through the pores. The steep capillary condensation in the

Fig. 6 N₂ adsorption-desorption of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/ NiMo with different Al mass

relative pressure P/P_0 range of 0.65–0.85 was attributed to the non-uniform pore sizes and shapes [40].

Table 2 showed the BET surface area, pore volume, and the average pore diameter (which was calculated with the BJH method) of prepared catalysts. In addition, it could be seen that SiO_2 - Al_2O_3 -10 had a higher surface area than SiO_2 -Al₂O₃-5 as well as pore volume and tended to increase upon higher weights of Al. This result could be attributed to the pore enlargement by Si-O-Al bonding [41]. However, upon NiMo loading, the surface area tended to decrease significantly in both SiO_2 -Al₂O₃-5/NiMo and SiO_2 -Al₂O₃-10/ NiMo. This happened presumably owing to the partial occupation or blockage of the pore space in the support of the active metal phase [42, 43]. SiO_2 - Al_2O_3 -25/NiMo possessed the highest surface area than its counterpart and increased pore diameter for the unloaded SiO_2 -Al₂O₃-25. The reason presumably could be due to changes in the electrostatic field in the pores of the support as the Al mass increases, which could cause electrostatic equilibrium in the pore supports, leading to an increase in pore diameter.

The total acidity of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/ NiMo catalysts measured by $NH₃$ -TPD was presented in Table 3 and the total acidity of unloaded SiO_2 -Al₂O₃-x showed no appreciable change (~0.53 mmol NH₃ g⁻¹ cat.) with increasing Al mass. The total acidity value

Table 2 The textural features of SiO_2 - Al_2O_3 -x and SiO_2 - Al_2O_3 -x/NiMo

catalysts					
Catalysts	BET surface area $(m^2 g^{-1})$	Pore volume $\rm (cm^3 \ g^{-1})$	Average pore diameter (nm)		
$SiO, -Al, O, -5$	59	0.29	19.56		
$SiO, -Al, O, -10$	240	0.91	15.07		
$SiO, -Al, O, -25$	326	1.26	15.38		
SiO_{2} -Al ₂ O ₃ -5/ NiMo	\mathfrak{D}	0.004	8.66		
$SiO, -Al, O, -10/$ NiMo	\mathfrak{D}	0.004	7.93		
$SiO, -Al, O, -25/$ NiMo	64	0.33	20.38		

Table 3 Total acidity of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/NiMo catalysts measured by $NH₃$ -TPD

was predominantly driven by Lewis and Bronsted acid sites from silica and alumina, which tended to double upon higher Al mass $(SiO₂-Al₂O₃-25)$ up to 1.07 mmol NH₃ g⁻¹ cat. due to the enhancement of Al^{3+} Lewis acid sites. Meanwhile, a decrease in total acidity was noticed in $\rm SiO_{2}$ -Al₂O₃-x upon NiMo loading. This result was presumably due to the aggloeration of the NiMo species, which led to the blocking of the alumina-silica acidic sites [44]. Compared to its counterparts, the total acidity increased in the order of SiO_2 -Al₂O₃-5/NiMo > SiO_2 -Al₂O₃-10/NiMo $>$ SiO₂-Al₂O₃-25/NiMo. However, this seemed to have a linear correlation with the surface area, suggesting that a high surface area could lead to high total acidity.

Fig. 7 showed NH_3 -TPD profiles of unloaded SiO_2 - Al_2O_3 -x and SiO_2 - Al_2O_3 -x/NiMo with different Al mass. The desorption peaks at ≤ 200 °C, corresponded to weak acidic sites, while the desorption peaks at 200–300 °C and $>$ 300 °C showed the presence of medium and strong acidic sites, respectively [20]. SiO_2 -Al₂O₃-5 had only strong acidic sites, while SiO_2 -Al₂O₃-10 had both weak and strong acidic sites. The desorption peak intensity tended to increase pronouncedly upon higher Al mass $(SiO₂-Al₂O₃-25)$,

Fig. 7 NH₃-TPD profiles of SiO₂-Al₂O₃-x and SiO₂-Al₂O₃-x/NiMo with

SiO₂-Al₂O₃-x possessed a higher yield of biogasoline upon -TPD profiles of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/NiMo with different Al mass

suggesting that increasing the Al mass led to an increase in the density of acidic and formed weak acidic sites. Both SiO_2 -Al₂O₃-5/NiMo and SiO_2 -Al₂O₃-10/NiMo had only strong acidic sites, but the latter had lower acid density. Moreover, SiO_2 -Al₂O₃-25/NiMo had weak and strong acidic sites with higher density, showing better acidity strength compared to its counterparts.

3.2 Catalytic performance in CPO hydrocracking

Table 4 shows the catalytic performance of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/NiM in terms of CPO conversion and biofuel yield. Additionally, it could be seen that SiO_2 -Al₂O₃-5 had the lowest CPO conversion (75.78%) and tended to rise to 84.47% upon introducing 10 g Al on the support $(SiO₂-Al₂O₃-10)$. The highest CPO conversion up to 91.20% was achieved by SiO_2 -Al₂O₃-25, showing that increasing Al mass promoted higher CPO conversion owing to the weak-strong acidic sites derived from Si–(OH)–Al. It was reported that hydrocracking performance increased with the increase in the acidity of the catalyst [45]. Upon NiMo loading, $SiO_2/Al_2O_3 - 5$ had higher CPO conversion (92.99%) than its parent catalyst, presumably due to the moderately dispersed active metal within the pores of the catalyst, hence increasing its catalytic activity. Similarly, SiO_2/Al_2O_3 -10 showed higher CPO conversion (91.34%) as well as $SiO_2/Al_2O_3-25/NiMo$ (91.73%), suggesting a synergetic effect between the former acidic sites from alumina-silica and the dispersed NiMo species onto the support hence enhancing the CPO conversion. Although no appreciable change in the CPO conversion $(\sim)91-92\%)$ was noticed in the case of the NiMo catalyst analogues, however, it possessed different catalytic activity in terms of biofuel yields. SiO_2 -Al₂O₃-5 exhibited predominant bio-aviation (34.26%), followed by biodiesel (2.28%), and had the lowest biogasoline yields (2.28%). The high bio-aviation yield was attributed to the mesoporous structure that provided better diffusion and accessibility between the CPO and acidic sites, hence selectively forming $C_{10}-C_{14}$ carbons. Unloaded

Table 4 Catalytic activity of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/NiMo towards hydrocracking of CPO

Catalysts		Yield $(\%)$		
	Conversion $(\%)$	Biogasoline $(C_s - C_o)$	Bio-aviation $(C_{10} - C_{14})$	Biodiesel $(C_{15} - C_{22})$
SiO_{2} -Al ₂ O ₃ -5	75.78	2.28	34.26	17.22
SiO_{2} -Al ₂ O ₃ -10	84.47	2.85	44.55	8.58
SiO_{2} -Al ₂ O ₃ -25	91.20	11.15	46.31	11.76
SiO_{2} -Al ₂ O ₃ -5/NiMo	92.99	18.13	62.92	1.70
SiO_{2} -Al ₂ O ₃ -10/NiMo	91.34	13.26	61.31	2.34
$SiO2-Al2O2-25/NiMo$	91.73	18.47	58.00	2.00

introducing higher Al mass onto the support, presumably owing to the higher surface area and dominantly small pore diameter. It was reported that the fraction of gasoline was much more favorable to diffuse into a small pore than the larger fractions [16]. Upon NiMo loading, SiO_2 -Al₂O₃-5/ NiMo showed an increase in bio-aviation yield up to 62.92% along with higher biogasoline and decreased biodiesel yield compared to the unloaded SiO_2 - Al_2O_3 , which suppressed the formation of longer carbon chain biofuel due to the excessive cracking of longer carbon towards shorter carbon chain biofuels. The same trends were also observed with SiO_2 - Al_2O_3 -10/NiMo and SiO_2 - Al_2O_3 -10/NiMo with comparable catalytic activity for unloaded SiO_2 - Al_2O_3 -x, showing that SiO_2 -Al₂O₃-x/NiMo promoted higher CPO yield and shortchain biofuels yield. Compared to SiO_2/Zr -KHF and $SiO_2/$ ZrN-EDTA prepared by the template approach, the present catalysts showed comparable results with their counterparts under lower hydrocracking temperatures [11, 43]. Despite that controlling the Al mass in SiO_2/Al_2O_3 -NiMo showed the textural and acidity features dependency. Future studies however must address the composition of the different phases and their oxidation state to completely understand the inherent features that eventually affect catalytic activity.

References

- [1] Barrón C., A. E., Melo-Banda, J. A., Dominguez E., J. M., Hernández M., E., Silva R., R., Reyes T., A. I., Meraz M., M. A. "Catalytic hydrocracking of vegetable oil for agrofuels production using Ni-Mo, Ni-W, Pt and TFA catalysts supported on SBA-15", Catalysis Today, 166(1), pp. 102–110, 2011. <https://doi.org/10.1016/j.cattod.2011.01.026>
- [2] El-Deeb, Z. M., Aboutaleb, W. A., Mohamed, R. S., Dhmees, A. S., Ahmed, A. I. "Gasoline and diesel-like fuel production via hydrocrackin-g of hydrotreated tire pyrolytic oil over Ni-W/MCM-41 derived from blast furnace slag", Journal of the Energy Institute, 103, pp. 84–93, 2022.
- <https://doi.org/10.1016/j.joei.2022.05.013> [3] Dujjanutat, P., Kaewkannetra, P. "Production of bio-hydrogenated
- kerosene by catalytic hydrocracking from refined bleached deodorised palm/ palm kernel oils", Renewable Energy, 147, pp. 464–472, 2020. <https://doi.org/10.1016/j.renene.2019.09.015>
- [4] Šimáček, P., Kubička, D. "Hydrocracking of petroleum vacuum distillate containing rapeseed oil: Evaluation of diesel fuel", Fuel, 89(7), pp. 1508–1513, 2010. <https://doi.org/10.1016/j.fuel.2009.09.029>
- [5] Saab, R., Polychronopoulou, K., Zheng, L., Kumar, S., Schiffer, A. "Synthesis and performance evaluation of hydrocracking catalysts: A review", Journal of Industrial and Engineering Chemistry, 89, pp. 83–103, 2020.

<https://doi.org/10.1016/j.jiec.2020.06.022>

4 Conclusion

The effect of Al mass on the structure, acidity features, and CPO hydrocracking catalytic performance of SiO_2 -Al₂O₃-x and SiO_2 -Al₂O₃-x/NiMo were presented. Increasing Al mass led to an increase in the total acidity, surface area, and the amorphous feature of SiO_2/Al_2O_3 . SiO_2/Al_2O_3 -25 exhibited a better support, as evidenced by providing well-dispersed NiMo species. Hydrocracking test of the CPO showed that SiO_2 - Al_2O_3 -x/NiMo had higher CPO conversion and successfully formed higher dominant bio-aviation and biogasoline yields compared to unloaded SiO_2 -Al₂O₃-x. These catalysts successfully suppressed the long carbon chain favoring the short carbon chain, showing good hydrocracking activity. Further analysis regarding the composition of different phases and their oxidation state must be considered to comprehend the properties of the catalysts and their catalytic process in CPO conversion.

Acknowledgement

The authors gratefully acknowledge to National research and innovation agency (BRIN), Indonesia, for funding this research through RIIM Batch III research grant contract No. 0256.03/UN9/SB3.LP2M.PT/2023.

[6] Subsadsana, M., Ruangviriyachai, C. "Effect of NiW Modified HZSM-5 and HY Zeolites on Hydrocracking Conversion of Crude Palm Oil to Liquid Hydrocarbons", Oriental Journal of Chemistry, 32(2), pp. 839–844, 2016.

<https://doi.org/10.13005/ojc/320208>

- [7] Mirzayanti, Y. W., Kurniawansyah, F., Prayitno, D. H., Roesyadi, A. "Zn-Mo/HZSM-5 Catalyst for Gasoil Range Hydrocarbon Production by Catalytic Hydrocracking of Ceiba pentandra oil", Bulletin of Chemical Reaction Engineering & Catalysis, 13(1), pp. 136–143, 2018. <https://doi.org/10.9767/bcrec.13.1.1508.136-143>
- [8] Kadarwati, S., Rahmawati, F., Eka Rahayu, P., Imam Supardi, K. "Kinetics and Mechanism of Ni/Zeolite-Catalyzed Hydrocracking of Palm Oil into Bio-Fuel", Indonesian Journal of Chemistry, 13(1), pp. 77–85, 2013.

<https://doi.org/10.22146/ijc.21330>

- [9] Zandonai, C. H., Yassue-Cordeiro, P. H., Castellã-Pergher, S. B., Scaliante, M. H. N. O., Fernandes-Machado, N. R. C. "Production of petroleum-like synthetic fuel by hydrocracking of crude soybean oil over ZSM5 zeolite-Improvement of catalyst lifetime by ion exchange", Fuel, 172, pp. 228–237, 2016. <https://doi.org/10.1016/j.fuel.2015.12.059>
- [10] Alisha, G. D., Trisunaryanti, W., Syoufian, A., Larasati, S. "Synthesis of high stability $Mo/SiO₂$ catalyst utilizing Parangtritis beach sand for hydrocracking waste palm oil into biofuel", Biomass Conversion and Biorefinery, 13(12), pp. 11041–11055, 2023. <https://doi.org/10.1007/s13399-021-02064-x>

[11] Asri, W. R., Hasanudin, H., Wijaya, K. "Hydroconversion of Crude Palm Oil Over Highly Dispersed Porous Silica Modified Zirconium Nitride: Effect of EDTA and KHF Template", Silicon, 16(1), pp. 83–97, 2024.

<https://doi.org/10.1007/s12633-023-02659-1>

- [12] Allwar, A., Maulina, R., Julianto, T. S., Widyaningtyas, A. A. "Hydrocracking of Crude Palm Oil over Bimetallic Oxide Nio-CdO/biochar Catalyst", Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), pp. 476–485, 2022. <https://doi.org/10.9767/bcrec.17.2.14074.476-485>
- [13] Mampuru, M. B., Nkazi, D. B., Mukaya, H. E. "Hydrocracking of waste cooking oil into biogasoline in the presence of a bi-functional Ni-Mo/alumina catalyst", Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 42(20), pp. 2564–2575, 2020. <https://doi.org/10.1080/15567036.2019.1610527>
- [14] Anand, M., Farooqui, S. A., Kumar, R., Joshi, R., Kumar, R., Sibi, M. G., Singh, H., Sinha, A. K. "Optimizing renewable oil hydrocracking conditions for aviation bio-kerosene production", Fuel Processing Technology, 151, pp. 50–58, 2016. <https://doi.org/10.1016/j.fuproc.2016.05.028>
- [15] Subsadsana, M., Sansuk, S., Ruangviriyachai, C. "Enhanced liquid biofuel production from crude palm oil over synthesized NiMoW-ZSM-5/MCM-41 catalyst", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(2), pp. 237–243, 2018. <https://doi.org/10.1080/15567036.2017.1411992>
- [16] Alisha, G. D., Trisunaryanti, W., Syoufian, A. "Hydrocracking of Waste Palm Cooking Oil into Hydrocarbon Compounds over Mo Catalyst Impregnated on SBA-15", Silicon, 14(5), pp. 2309–2315, 2022.

<https://doi.org/10.1007/s12633-021-01035-1>

- [17] Žula, M., Grilc, M., Likozar, B. "Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena", Chemical Engineering Journal, 444, 136564, 2022. <https://doi.org/10.1016/j.cej.2022.136564>
- [18] Nadia, A., Wijaya, K., Falah, I. I., Sudiono, S., Budiman, A. "Selfregeneration of Monodisperse Hierarchical Porous NiMo/Silica Catalyst Induced by NaHCO_3 for Biofuel Production", Waste and Biomass Valorization, 13(4), pp. 2335–2347, 2022. <https://doi.org/10.1007/s12649-021-01634-4>
- [19] Ishihara, A., Fukui, N., Nasu, H., Hashimoto, T. "Hydrocracking of soybean oil using zeolite-alumina composite supported NiMo catalysts", Fuel, 134, pp. 611–617, 2014. <https://doi.org/10.1016/j.fuel.2014.06.004>
- [20] Jafarian, S., Tavasoli, A., Nikkhah, H. "Catalytic hydrotreating of pyro-oil derived from green microalgae spirulina the (*Arthrospira*) plantensis over NiMo catalysts impregnated over a novel hybrid support", International Journal of Hydrogen Energy, 44(36), pp. 19855–19867, 2019.

<https://doi.org/10.1016/j.ijhydene.2019.05.182>

[21] Yang, J. K., Zuo, T. J., Lu, Y. Y., Zeng, W. S., Lu, J. Y. "Catalytic performance of $\text{NiMo}/\text{Al}_2\text{O}_3$ -USY in the hydrocracking of low-temperature coal tar", Journal of Fuel Chemistry and Technology, 47(9), pp. 1053–1066, 2019. [https://doi.org/10.1016/s1872-5813\(19\)30043-x](https://doi.org/10.1016/s1872-5813(19)30043-x)

[22] Xu, J., Huang, T., Fan, Y. "Highly efficient $NiMo/SiO₂-Al₂O₃$ hydrodesulfurization catalyst prepared from gemini surfactant-dispersed Mo precursor", Applied Catalysis B: Environmental, 203, pp. 839–850, 2017.

<https://doi.org/10.1016/j.apcatb.2016.10.078>

- [23] Li, M., Ihli, J., Verheijen, M. A., Holler, M., Guizar-Sicairos, M., van Bokhoven, J. A., Hensen, E. J. M., Weber, T. "Alumina-Supported NiMo Hydrotreating Catalysts─Aspects of 3D Structure, Synthesis, and Activity", The Journal of Physical Chemistry C, 126(43), pp. 18536–18549, 2022. <https://doi.org/10.1021/acs.jpcc.2c05927>
- [24] Kaluža, L., Palcheva, R., Spojakina, A., Jirátová, K., Tyuliev, G. "Hydrodesulfurization NiMo catalysts supported on Co, Ni and B modified Al₂O₃ from Anderson heteropolymolybdates", Procedia Engineering, 42, pp. 873–884, 2012. <https://doi.org/10.1016/j.proeng.2012.07.480>
- [25] Aneu, A., Wijaya, K., Syoufian, A. "Silica-Based Solid Acid Catalyst with Different Concentration of H_2SO_4 and Calcination Temperature: Preparation and Characterization", Silicon, 13(7), pp. 2265–2270, 2021. <https://doi.org/10.1007/s12633-020-00741-6>
- [26] Srihanun, N., Dujjanutat, P., Muanruksa, P., Kaewekannetra, P. "Biofuels of Green Diesel–Kerosene–Gasoline Production from Palm Oil: Effect of Palladium Cooperated with Second Metal on Hydrocracking Reaction", Catalysts, 10(2), 241, 2020. <https://doi.org/10.3390/catal10020241>
- [27] Leyva, C., Ancheyta, J., Travert, A., Maugé, F., Mariey, L., Ramírez, J., Rana, M. S. "Activity and surface properties of NiMo/ $SiO_2 - Al_2O_3$ catalysts for hydroprocessing of heavy oils", Applied Catalysis A: General, 425–426, pp. 1–12, 2012. <https://doi.org/10.1016/j.apcata.2012.02.033>
- [28] Tavasoli, A., Taghizadeh Yusefabad, E., Zamani, Y. "Hydrocracking process and kinetic equation: Effect of the fluoride on the performance of the Ni-Mo catalyst", Energy Science & Engineering, 9(8), pp. 1103–1114, 2021.

<https://doi.org/10.1002/ese3.876>

[29] Hao, F., Zhong, J., Liu, P.-L., You, K.-Y., Luo, H.-A. "Amorphous SiO_2 -Al₂O₃ supported Co_3O_4 and its catalytic properties in cyclohexane nitrosation to ε-caprolactam: Influences of preparation conditions", Journal of Molecular Catalysis A: Chemical, 363–364, pp. 41–48, 2012.

<https://doi.org/10.1016/j.molcata.2012.05.014>

- [30] Lee, J. S., Kim, H. S., Park, N.-K., Lee, T. J., Kang, M. "Low temperature synthesis of α-alumina from aluminum hydroxide hydrothermally synthesized using $[A(C_2O_4)x(OH)y]$ complexes", Chemical Engineering Journal, 230, pp. 351–360, 2013. <https://doi.org/10.1016/j.cej.2013.06.099>
- [31] Liang, Y., Shi, G., Jin, K. "Promotion Effect of Al_2O_3 on Pt-WO_x/SiO₂ Catalysts for Selective Hydrogenolysis of Bioglycerol to 1,3-Propanediol in Liquid Phase", Catalysis Letters, 150(8), pp. 2365–2376, 2020.

<https://doi.org/10.1007/s10562-020-03140-z>

[32] Priecel, P., Kubička, D., Vázquez-Zavala, A., Antonio de los Reyes, J., Pouzar, M., Čapek, L. "Alternative Preparation of Improved NiMo-Alumina Deoxygenation Catalysts", Frontiers in Chemistry, 8, 216, 2020.

<https://doi.org/10.3389/fchem.2020.00216>

[33] Hamidi, R., Khoshbin, R., Karimzadeh, R. "A new approach for synthesis of well-crystallized Y zeolite from bentonite and rice husk ash used in Ni-Mo/Al₂O₃-Y hybrid nanocatalyst for hydrocracking of heavy oil", Advanced Powder Technology, 32(2), pp. 524–534, 2021.

<https://doi.org/10.1016/j.apt.2020.12.029>

- [34] Li, J., Li, P., Li, J., Tian, Z., Yu, F. "Highly-Dispersed Ni-NiO Nanoparticles Anchored on an SiO_2 Support for an Enhanced CO Methanation Performance", Catalysts, 9(6), 506, 2019. <https://doi.org/10.3390/catal9060506>
- [35] Badoga, S., Mouli, K. C., Soni, K. K., Dalai, A. K., Adjaye, J. "Beneficial influence of EDTA on the structure and catalytic properties of sulfided NiMo/SBA-15 catalysts for hydrotreating of light gas oil", Applied Catalysis B: Environmental, 125, pp. 67–84, 2012. <https://doi.org/10.1016/j.apcatb.2012.05.015>
- [36] Ayandiran, A. A., Boahene, P. E., Nanda, S., Dalai, A. K., Hu, Y. "Hydroprocessing of oleic acid for the production of aviation turbine fuel range hydrocarbons over bimetallic Fe-Cu/SiO₂-Al₂O₃ catalysts promoted by Sn, Ti and Zr", Molecular Catalysis, 523, 111358, 2022.

<https://doi.org/10.1016/j.mcat.2020.111358>

[37] Zitouni, A., Bachir, R., Bendedouche, W., Bedrane, S. "Production of bio-jet fuel range hydrocarbons from catalytic HDO of biobased difurfurilydene acetone over $Ni/SiO₂-ZrO₂$ catalysts", Fuel, 297, 120783, 2021.

<https://doi.org/10.1016/j.fuel.2021.120783>

[38] Escalona, G., Rai, A., Betancourt, P., Sinha, A. K. "Selective poly-aromatics saturation and ring opening during hydroprocessing of light cycle oil over sulfided $Ni-Mo/SiO₂-Al₂O₃$ catalyst", Fuel, 219, pp. 270–278, 2018.

<https://doi.org/10.1016/j.fuel.2018.01.134>

[39] Asri, W. R., Hasanudin, H., Wijaya, K. "Highly Active Mesoporous Zirconium Nitride Immobilized on SiO_2 Synthesized by Complex-Assisted Method with EDTA and KHP for Catalytic Hydroconversion of Crude Palm Oil", Catalysis Surveys from Asia, 28(1), pp. 74–87, 2024.

<https://doi.org/10.1007/s10563-023-09413-y>

- [40] Papageridis, K. N., Charisiou, N. D., Douvartzides, S. L., Sebastian, V., Hinder, S. J., Baker, M. A., AlKhoori, S., Polychronopoulou, K., Goula, M. A. "Effect of operating parameters on the selective catalytic deoxygenation of palm oil to produce renewable diesel over Ni supported on Al_2O_3 , ZrO_2 and SiO_2 catalysts", Fuel Processing Technology, 209, 106547, 2020. <https://doi.org/10.1016/j.fuproc.2020.106547>
- [41] Liu, Q., Li, J., Zhao, Z., Gao, M., Kong, L., Liu, J., Wei, Y. "Synthesis, characterization, and catalytic performances of potassium-modified molybdenum-incorporated KIT-6 mesoporous silica catalysts for the selective oxidation of propane to acrolein", Journal of Catalysis, 344, pp. 38–52, 2016. <https://doi.org/10.1016/j.jcat.2016.08.014>
- [42] Malins, K. "Synthesis of renewable hydrocarbons from vegetable oil feedstock by hydrotreatment over selective sulfur-free SiO_2 -Al2 O3 supported monometallic Pd, Pt, Ru, Ni, Mo and bimetallic NiMo catalysts", Fuel, 285, 119129, 2021. <https://doi.org/10.1016/j.fuel.2020.119129>
- [43] Hasanudin, H., Asri, W. R., Mara, A., Al Muttaqii, M., Maryana, R., Rinaldi, N., Sagadevan, S., Zhang, Q., Fanani, Z., Hadiah, F. "Enhancement of Catalytic Activity on Crude Palm Oil Hydrocracking over SiO₂/Zr Assisted with Potassium Hydrogen Phthalate", ACS Omega, 8(23), pp. 20858–20868, 2023. <https://doi.org/10.1021/acsomega.3c01569>
- [44] Vandevyvere, T., Sabbe, M. K., Mendes, P. S. F., Thybaut, J. W., Lauwaert, J. "NiCu-based catalysts for the low-temperature hydrodeoxygenation of anisole: Effect of the metal ratio on SiO_2 and γ-Al₂O₃ supports", Green Carbon, 1(2), pp. 170–184, 2023. <https://doi.org/10.1016/j.greenca.2023.10.001>
- [45] Leyva, C., Ancheyta, J., Mariey, L., Travert, A., Maugé, F. "Characterization study of $NiMo/SiO₂-Al₂O₃$ spent hydroprocessing catalysts for heavy oils", Catalysis Today, 220–222, pp. 89–96, 2014.

<https://doi.org/10.1016/j.cattod.2013.10.007>