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Abstract

This research aims to develop an artificial neural network (ANN) model to predict the specific heat capacity (SHC) of graphene/

SAE10W oil nanofluid. An experimental investigation of the SHC of graphene nanoplatelets infused in SAE10W oil was carried out 

using a thermal constant analyzer. In experimental testing the volume percentage and fluid temperature range vary from 0.05 to 

0.15 and 293 K to 353 K, respectively. The experimental data shows the graphene/SAE10W oil nanofluid exhibited a reduction in SHC 

relative to the base fluid. The ANN model was developed using experimental data to predict the specific heat capacity of graphene/

SAE10W oil nanofluid. During ANN model training, the correlation coefficient and mean square error of 0.999 and 6.592 × 10 –6 were 

achieved, respectively. Compared to experimental values, the ANN model predicts SHC with a 0.45 error percentage. Additionally, a 

mathematical model has been developed to predict the SHC of graphene/SAE10W oil nanofluids using curve fitting. The data obtained 

from the developed mathematical model showed excellent correlation with all experimental values, with an error percentage of ±0.42. 

Hence, it is concluded that both models provide an optimal approach for estimating their SHC.
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1 Introduction
In many industrial sectors, energy transportation for cool-
ing and heating persists as a challenge. Traditional fluids are 
commonly used by these industries to facilitate energy trans-
fer within thermal systems. The inefficiency of heat trans-
fer in traditional fluids like water, ethylene glycol (EG), and 
mineral oils is often due to their lower thermal conductivity 
[1–3]. Therefore, enhancing traditional fluids' heat transfer 
capability is highly desirable. In recent years, nanotechnol-
ogy progress has resulted in the advent of nanofluids (NFs), 
a new type of heat transfer fluid. These NFs are solid-liquid 
blends consisting of solid nanoparticles smaller than 100 nm 
and a conventional fluid. Nanoparticles can be made from a 
variety of materials, including metals, metal oxides, non-me-
tallic substances, and carbon nanotubes [4]. The potential for 
NFs to improve heat transfer and energy efficiency in a wide 
range of applications is immense [5, 6]. 

The applications of NFs to thermal systems have garnered 
considerable attention from researchers, particularly due 
to their crucial role in energy conversion. There are many 

applications for NFs in thermal systems, including solar 
collectors [7], microelectronics [8], aerospace [9], automo-
tive [10], and heat exchangers [11], among others [12, 13]. 
Several pro perties of NFs are particularly relevant to various 
applications, including density, viscosity, thermal conductiv-
ity, specific heat capacity (SHC), and diffusivity. These prop-
erties  determine the flow characteristics and heat transfer 
capabilities of NFs. Since then, researchers have extensively 
investigated the thermophysical properties of NFs.

Azharuddin et al. [14] investigated the thermophysical 
properties of hybrid NFs composed of AgNO3-graphene and 
water at concentrations (Φ) between 0.01 and 0.03 v/v%. 
They found that adding 0.01%, 0.02%, and 0.03% hybrid 
NFs to base fluids raised the thermal conductivity by 
8.21%, 15.37%, and 23.59% at 348 K, respectively, com-
pared to base fluids. Conversely, SHC decreased by 0.011%, 
0.027%, and 0.042% for Φ of 0.01 v/v%, 0.02 v/v%, and 
0.03 v/v% at 348 K, respectively. Rubaiee et al. [15] found 
that incorporating graphene oxide nanoparticles with EG 
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and water mixture nanofluid significantly increased their 
thermal conductivity by 9.5% at 313 K.

The properties of NFs, such as thermal conductivity 
and viscosity, have received the most attention, while den-
sity and SHC have received considerably less attention. 
Thermal diffusivity and conductivity can also be calcu-
lated using SHC to determine an NFs heat storage capacity. 
The SHC of NFs has been investigated in several experi-
mental studies [16–18]. Although experimental measure-
ments are a reliable method for measuring the SHC of NFs, 
the process of synthesizing and characterizing them can 
be costly and technically difficult. The use of models and 
simulation studies can help in addressing these challenges. 
In previous studies, theoretical models have not been able 
to accurately predict the SHC of NFs. As a result, a more 
precise estimate of SHC requires an alternative approach. 
In this regard, machine learning (ML) techniques, such 
as artificial neural networks (ANN), have been used to 
investigate the thermophysical properties of various NFs. 
For instance, Zhang et al. [19] investigated and developed 
a Gaussian process regression model (GPR) to predict the 
SHC of NFs. The model utilized a dataset comprising CuO 
and Al2O3 nanoparticles, along with water and EG as base 
liquids. They observed that the developed model exhibited 
a high correlation coefficient of 99.99% and demonstrated 
high prediction accuracy. 

Mukesh Kumar et al. [20] created a GPR model to predict 
the thermal conductivity and dynamic viscosity ratios of NFs 
made of Al2O3 and water. The model showed that the ther-
mal conductivity ratio and the dynamic viscosity ratio were 
very close to the experimental data, with root mean square 
error (RMSE) values of 0.000126 and 0.000045, respec-
tively. Kamsuwan et al. [21] analyzed three major types of 
water-based nanoparticles, including Al2O3, CuO, and TiO2, 
using an ANN model. They found that the predictions of the 
NF properties using the ANN model matched reality better 
than other numerical methods. There was only a 4.1% max-
imum error in the predicted results. Wang et al. [22] devel-
oped the ANN model to predict the thermal conductivity of 
NFs containing EG and various nanoparticles. The model 
showed a high correlation between the predicted results and 
experimental data, with 99.74% of the data within 5% of 
their respective deviations. Similarly, Shaopeng Tian et al. 
[23] investigated and created an ANN model to predict the 
thermal conductivity of a graphene oxide-Al2O3 /water-EG 
hybrid nanofluid. They discovered that the ANN model has 
an average mean square error (MSE) of 1.67 × 10–6 and a 
correlation coefficient of 0.999. Sharma et al. [24] utilized 
ML algorithms to analyze the thermal conductivity of Titania 

water NFs. The findings revealed that gradient boosting 
emerged as the most effective algorithm for thermal conduc-
tivity predictions, achieving test and train accuracy of 99%. 
Ibrahim et al. [25] developed an  ANN and RSM model to 
figure out how well SiO2-EG and SiO2-glycerol NFs conduct 
heat. Both methods were able to accurately predict the ther-
mal conductivity ratio, and a cubic function with an R2 value 
of 0.9977 and 0.9994, respectively, was suggested for both 
NFs. Similarly, Tawfeeq Abdullah Alkanhal [26] examined 
the thermal conductivity of reduced graphene oxide sol-
ids dispersed in water. The study revealed that the highest 
enhancement in thermal conductivity (31.19%) was observed 
at a concentration of 5 m/m% at 323 K. By curve-fitting 
the 3D output, a novel correlation was developed, predict-
ing nanofluid thermal conductivity with a minimum devi-
ation of 1.25%. Additionally, an artificial neural network 
was trained, achieving an R2 value of 0.99. Olumegbon et al. 
[27] created a machine learning model that could predict the 
viscosity of carbon nanomaterials in diesel oil. The model 
was able to achieve a 99.98% correlation coefficient and a 
99.99% RMSE for both the training and testing data sets. 
Meijuan et al. [28] developed the ANN model to estimate the 
thermophysical properties of magnetic NFs with an average 
deviation of 5% based on experimental data. However, only 
a few studies have used ANN to predict the SHC of NFs. 

Similarly, the novelty of the work is the incorporation of 
graphene nanoplatelets into SAE10W oil for enhancing auto-
motive shock absorber performance. In addition, the utiliza-
tion of ANN for predicting the SHC of graphene/SAE10W 
oil NFs adds an innovative approach for the integration of 
advanced computational techniques in material science. We 
developed an ANN and mathematical models to estimate the 
SHC of these NFs. The effectiveness of ANN and mathe-
matical models in predicting the SHC of graphene/SAE10W 
oil NFs was evaluated by comparing experimental data with 
predictions obtained from the developed models.

2 Materials and methods
2.1 Experimental data collection
In this study, graphene nanoplatelets (thickness 4 nm, 
length 2 μm, purity ≥ 99.0%, surface area of 700 m2/g, den-
sity at 293 K is 2100 kg/m3) procured from Cheap Tubes Inc., 
(USA) were utilized in the preparation of the NFs, with auto-
motive shock absorber oil (Make: India Yamaha Motor PVT.
Ltd, grade: SAE10W) selected as the base fluid. The density 
of SAE10W oil, determined at 293 K, is 875.5 kg/m3 using a 
pycnometer in accordance with ASTM D1298. Fig. 1 shows 
a high-resolution scanning electron microscopic image 
(HRSEM, ThermoScientific Apreo S) used for characterizing 
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the morphological properties of graphene nanoplatelets. 
These images reveal that the graphene nanoplatelets are thin 
sheets with wrinkled surfaces. Furthermore, a two-step pro-
cedure [21] were used to prepare NFs with a uniform distri-
bution of nanoparticles, which ensures that the nanoparticles 
are evenly distributed throughout the base fluid.

The thermal constants analyzer from Hot Disk Instrument 
(Model: TPS2500S) was used to measure the SHC of the 
graphene/SAE10W oil NFs. In this experiment, graphene 
nanoplatelet was influenced by Φ variation and the fluid 
temperature (T) ranged from 293 K to 353 K. The mass of 
graphene nanoplatelets was calculated using Eq. (1). 
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In this equation ρgraphene is the density of graphene nanopar-
ticles (kg/m3 ), ρSAE10Woil represents the density of the oil in  
(kg/m3 ), mgraphene represents the mass of the graphene nanopar-
ticles in g, while mSAE10Woil indicates the mass of the oil in g.

2.2 Development of ANN and mathematical models
ANNs are computational models that are constructed 
by replicating biologically inspired neural networks and 
their structures and functions. The nonlinear data pattern 
can be learned by ANNs by using a model network to 
provide better output. There are three layers in the ANN 
model, with different numbers of neurons in each layer. 
Its input neurons on the first layer transmit data to the 
hidden layer located on the second layer, and the output 
neurons on the third layer form the output layer. Neurons 
are interconnected across all layers via a mass coefficient. 
The schematic layout of ANN structure and applica-
tions of the NFs are shown in Fig. 2. The data processing 
process involves iterative refinement of successive out-
puts until the difference between them is minimized to 
improve data quality. The configuration information for 
the ANN structure is shown in Table 1.

For estimating the SHC of graphene/SAE10W oil 
NFs, a multi-layer perceptron (MLP)–ANN model was 
developed using NNTOOL in MATLAB software [29]. 
The Levenberg-Marquardt (Trainlm) backpropagation 
algorithm, considered as one of the best methods for 
training an ANN, was also utilized. For modeling the 
ANN, a single hidden layer feed-forward MLP method 
was selected. Tan-Sigmoid and purelin were selected as 
the active transfer functions for both the hidden and out-
put layers. The ANN used 65 experimental data points, 
with T and Φ being inputs and SHC values being out-
puts. The model used three sets of data inputs categorized 
as training, validation and testing. Specifically, the train-
ing set comprised 45 (70%) of the 65 experimental SHC 
data points, while the validation and test sets included 
10 (15%) of the 65 data points each. The most suitable 

Fig. 1 HRSEM micrograph of graphene nanoplatelets

Fig. 2 ANN structure schematic layout for predicting SHC of NFs and NFs applications
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architecture and ANN design capable of predicting the 
results optimally were determined by varying the number 
of neurons in the hidden layer. 

When simulations are performed with different quan-
tities of neurons in the hidden layer, different outcomes 
may occur. Consequently, a simulation was conducted 
using various numbers of neurons to ascertain the opti-
mal quantity, which was found to be 7. A comparison 
between the simulation iteration was made to determine 
the most suitable architecture. The flowchart for deter-
mining the optimal ANN model is illustrated in Fig. 3. 
To optimize the ANN, the MSE value in Eq. (2) and the R 
value in Eq. (3) were employed [30]. These criteria show 
that the constructed ANN model accurately estimates the 
SHC of the graphene/SAE10W oil NFs.
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In the above equations, N denotes the total number of 
data points, and Cp exp� �

 represents the SHC value measured 
through experimentation. Cp ANN� �

 represents the SHC value 
derived from the ANN model.

A mathematical model was built to estimate the SHC 
with the help of experimental data and curve fitting appli-
cation of MATLAB software. This technique is con-
sidered to change the order of polynomial equations to 
form mathematical correlations that are dependent on the 
sum of squared errors (SSE) and R2 values. The resulting 
mathematical model predicts the SHC of the graphene/
SAE10W oil NFs based on Φ and T.

3 Result and discussion
3.1 Experimental analysis of SHC of NFs
ANN models were built based on 65 data points from 
graphene/SAE10W oil NFs at five different Φ levels. 
The SHC values of the base fluid and graphene/SAE10W 
oil NFs are shown in Fig. 4.

The T range from 293 K to 353 K, and the Φ values are 
0.050, 0.075, 0.100, 0.125, and 0.150 v/v%. As shown in 
the figure, the x-axis represents the Φ of graphene nano-
platelets, while the y-axis represents the SHC of fluids. 

Fig. 3 Flowchart of the proposed algorithm for optimizing ANNs

Fig. 4 SHC of graphene/SAE10W oil NFs

Table 1 The ANN structure information

Network Parameters Information

Neural network structure Multi-layer perceptron

Type of network Feed forward

Training approach Back propagation

Error criteria MSE & R

Best training method Trainlm

Number of hidden layers 1

Hidden layer activation function Tan-Sig

Output layer function Purelin

Number of training data 45

Number of validation data 10

Number of test data 10
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This figure indicates the SHC of the base fluid oil increases 
from 1.97 kJ/kg K to 2.41 kJ/kg K with an increase in T. 
However, when nanoparticles are added, the SHC of the 
base fluid gradually decreases. The minimum and maximum 
reductions in SHC of the graphene/SAE10W oil NFs rel-
ative to the base fluid are 19% at 293 K with a graphene 
Φ of 0.050 v/v% and 40% at 353 K with a graphene Φ of 
0.150 v/v%, respectively. Typically, fluids exhibit higher 
SHC than metals. This is because metals have tightly 
packed atoms that can efficiently conduct heat from one 
atom to another atom [31, 32]. As a result, metals require 
significantly less energy per unit mass to heat than fluids. 
The transfer of heat through conduction, which is aided by 
convection, is primarily done by NFs when nanoparticle 
concentrations increases. As a result of this transition, the 
SHC of NFs decreases. Furthermore, a high volume per sur-
face area could result in an increase or decrease in SHC [33].

3.2 ANN model performance analysis
In the training process of an ANN, the performance chart is 
a significant indicator, especially when predicting SHC, as 
depicted in Fig. 5. This graph illustrates the changes in MSE as 
training progresses. The horizontal axis represents the number 
of repetitions (epochs) in the training loop, while the vertical 
axis represents the MSE. In the early stages, MSE values are 
high, but they decrease after repeated training. In Fig. 5, the 
training curve continuously decreases and reaches its best val-
idation point at epoch 52, with an MSE value of 6.592 × 10 –6 .

The trainlm algorithm optimal ANN is identified by alter-
ing the number of neurons in the hidden layers during the 
process. The output functions are approximated by select-
ing the network with the least error. Another indicator of 

proper ANN training is the regression diagram and regres-
sion coefficient (R) between the actual ANN output data and 
the experimental data, respectively. In Fig. 6 the training, val-
idation, testing, and overall segments of the ANN are pre-
sented. As shown in these figures, there is a close correlation 
between the experimental results and predictions. The results 
show the ANN was trained accurately and was able to pre-
dict nanofluid SHC. The R indicates the relationship between 
experimental and ANN prediction values. The R value of 1 
signifies a close relationship between the experimental and 
prediction data, although zero suggests an accidental rela-
tionship. According to the findings, the R for all segments of 
the ANN are greater than 0.9996, indicating a strong correla-
tion between the experimental and prediction data.

A histogram of ANN errors for an SHC parameter is 
depicted and presented in bar chart format as shown in 
Fig. 7. The figure indicates, the instances of errors across 
different error values. The x-axis shows the error values, 
while the frequency or number of errors related to each 
value is shown on the y-axis. A low error rate within the 
system is indicated by repeated occurrences of data errors 
near the zero-error line, which indicates well-trained 
problem data. Taller bar charts near the zero-error line, 
indicate a higher numerical density, which signifies the 

Fig. 5 Variations of epochs with MSE
Fig. 6 Regression diagram for ANN prediction: a), training, b) 

validation, c) testing d) overall

(d)(c)

(b)(a)
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selected method has effectively brought the output of pre-
dicted ANN values very close to the experimental values.

3.3 Mathematical model performance analysis
In Figs. 8 and 9, two-dimensional contour plots and 
three-dimensional surface plots illustrate every possible 
interaction parameter that can influence SHC, respec-
tively. A mathematical model was used to determine the 
optimal performance of the graphene/SAE10W oil NFs.

In this approach, polynomials ranging from first to 
fourth order is employed to predict the output variable. 

These polynomials comprise a combination of linear 
equations and are expressed in Eq. (4) as follows:
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In the above equation, ( )Cp nf  represents the specific capac-
ity of the nanofluid in kJ/kg K, ( )Cp bf  denotes the specific 
heat capacity of the base fluid in kJ/kg K, and C0 to C13 
represent the coefficients.

Table 2 lists the coefficients used in Eq. (4). Each coef-
ficient (C0 to C13) has a corresponding value that is uti-
lized in the equation.

Table 3 depicts the goodness of fit of Eq. (4). The good-
ness of fit is assessed through a sum of square errors of 
0.0004077, an RMSE of 0.0028, and an R2 value of 0.99884. 

The fitting method yields residual errors ranging 
between 0.0004 and 0.0006, as depicted in Fig. 10.

Fig. 11 illustrates the error in estimating the SHC value 
for both the ANN and mathematical models. The error 
percentages for both methods are approximately ±0.45% 
and ±0.42%, which is in acceptable limit.

Fig. 12 depicts a comparison between the predicted 
and experimental SHC of the graphene/SAE10W oil NFs. 
According to the figures, both the ANN model and math-
ematical model predict SHC values that are consistent 
with experimental measurements.

Table 2 Coefficients of Eq. (4)

Coefficients Value

C0 1.5022

C1 0.0273

C2 0.0425

C3 0.1110

C4 0.0089

C5 0.0054

C6 0.0200

C7 0.0056

C8 0.0006

C9 0.0001

C10 0.0527

C11 0.0042

C12 0.0010

C13 0.0008

Table 3 Goodness fit of Eq. (4)

SSE R2 RMSE

0.0004077 0.99884 0.0028Fig. 9 Surface fit plots for SHC of NFs

Fig. 7 ANN error histogram

Fig. 8 Contour plots for SHC of NFs
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Fig. 10 Residuals plot for fitting Fig. 11 Percentage of error in predicting SHC

Fig. 12 Comparison of ANN and mathematical model outputs with experimental values a) Φ=0.050 v/v%, b) Φ=0.075 v/v%, c) Φ=0.100 v/v%, 
d) Φ=0.125 v/v%, e) Φ=0.150 v/v%

(e) (c)

(d) (b)

(a)
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